login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036354 Heptagonal square numbers. 5
1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Ant King, Nov 11 2011: (Start)

This sequence is also the union of the three sequences defined by:

a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600.

a(3n-1) = 9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2.

a(3n) = ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600.

Equivalent short forms for these subsequences are:

a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600).

a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)).

a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600).

(End)

Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..475

Eric Weisstein's World of Mathematics, Heptagonal Square Number.

Index entries for linear recurrences with constant coefficients, signature (1,0,2079362,-2079362,0,-1,1).

FORMULA

O.g.f.: -x*(1 + 80*x + 5848*x^2 + 222070*x^3 + 5848*x^4 + 80*x^5 + x^6) / ( (x-1)*(x^6 - 2079362*x^3 + 1) ).

From Richard Choulet, May 08 2009: (Start)

With the first values, for n>=0, a(n+9) = 2079363*(a(n+6) - a(n+3)) + a(n).

On every bisection modulo 2: a(n+1) = 1039681*a(n) + 116964 + 164388*sqrt(40*a(n)^2 + 9*a(n)).

On every bisection modulo 2: a(n+2) = 2079362*a(n+1) - a(n) + 233928. (End)

From Ant King, Nov 11 2011: (Start)

a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7).

a(n) = 2079362*a(n-3) - a(n-6) + 233928.

(End)

From Jonathan Pappas, Jan 16 2022: (Start)

Define the three sequences

b(n) = 1442*b(n-1) - b(n-2) for n >= 2, with b(0) = -77, b(1) = 1;

c(n) = 1442*c(n-1) - c(n-2) for n >= 2, with c(0) = -9, c(1) = 9; and

d(n) = 1442*d(n-1) - d(n-2) for n >= 2, with d(0) = -1, d(1) = 77.

Then, for n >= 1,

a(3n - 2) = b(n)^2,

a(3n - 1) = c(n)^2, and

a(3n) = d(n)^2.

(End)

MAPLE

A036354 := proc(n)

if n <= 7 then

op(n, [1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]);

else

procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ;

end if;

end proc:

seq(A036354(n), n=1..12) ;

MATHEMATICA

LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *)

PROG

(PARI) Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015

CROSSREFS

Cf. A046195, A046196, A253920.

Sequence in context: A237937 A060349 A212706 * A205887 A205199 A250612

Adjacent sequences: A036351 A036352 A036353 * A036355 A036356 A036357

KEYWORD

nonn,easy

AUTHOR

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

EXTENSIONS

More terms from Eric W. Weisstein

One more term from Richard Choulet, May 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 23:04 EDT 2023. Contains 361717 sequences. (Running on oeis4.)