The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036354 Heptagonal square numbers. 5
 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Ant King, Nov 11 2011: (Start) This sequence is also the union of the three sequences defined by: a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600. a(3n-1) = 9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2. a(3n) = ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600. Equivalent short forms for these subsequences are: a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600). a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)). a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600). (End) Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015 LINKS Colin Barker, Table of n, a(n) for n = 1..475 Eric Weisstein's World of Mathematics, Heptagonal Square Number. Index entries for linear recurrences with constant coefficients, signature (1,0,2079362,-2079362,0,-1,1). FORMULA O.g.f.: -x*(1 + 80*x + 5848*x^2 + 222070*x^3 + 5848*x^4 + 80*x^5 + x^6) / ( (x-1)*(x^6 - 2079362*x^3 + 1) ). From Richard Choulet, May 08 2009: (Start) With the first values, for n>=0, a(n+9) = 2079363*(a(n+6) - a(n+3)) + a(n). On every bisection modulo 2: a(n+1) = 1039681*a(n) + 116964 + 164388*sqrt(40*a(n)^2 + 9*a(n)). On every bisection modulo 2: a(n+2) = 2079362*a(n+1) - a(n) + 233928. (End) From Ant King, Nov 11 2011: (Start) a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7). a(n) = 2079362*a(n-3) - a(n-6) + 233928. (End) From Jonathan Pappas, Jan 16 2022: (Start) Define the three sequences b(n) = 1442*b(n-1) - b(n-2) for n >= 2, with b(0) = -77, b(1) = 1; c(n) = 1442*c(n-1) - c(n-2) for n >= 2, with c(0) = -9, c(1) = 9; and d(n) = 1442*d(n-1) - d(n-2) for n >= 2, with d(0) = -1, d(1) = 77. Then, for n >= 1, a(3n - 2) = b(n)^2, a(3n - 1) = c(n)^2, and a(3n) = d(n)^2. (End) MAPLE A036354 := proc(n) if n <= 7 then op(n, [1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]); else procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ; end if; end proc: seq(A036354(n), n=1..12) ; MATHEMATICA LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *) PROG (PARI) Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015 CROSSREFS Cf. A046195, A046196, A253920. Sequence in context: A237937 A060349 A212706 * A205887 A205199 A250612 Adjacent sequences: A036351 A036352 A036353 * A036355 A036356 A036357 KEYWORD nonn,easy AUTHOR Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr) EXTENSIONS More terms from Eric W. Weisstein One more term from Richard Choulet, May 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 23:04 EDT 2023. Contains 361717 sequences. (Running on oeis4.)