login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036354
Heptagonal square numbers.
5
1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721
OFFSET
1,2
COMMENTS
From Ant King, Nov 11 2011: (Start)
This sequence is also the union of the three sequences defined by:
a(3n-2) = ((10 - sqrt(10)) * (3 + sqrt(10))^(4*n-3) - (10 + sqrt(10)) * (-3 + sqrt(10))^(4*n-3))^2 / 1600.
a(3n-1) = 9/160 * ((3 + sqrt(10))^(4*n-2) - (-3 + sqrt(10))^(4*n-2))^2.
a(3n) = ((20 - 7*sqrt(10)) * (3 + sqrt(10))^(4*n) + (20 + 7*sqrt(10)) * (-3 + sqrt(10))^(4*n))^2 / 1600.
Equivalent short forms for these subsequences are:
a(3n-2) = floor((10 - sqrt(10))^2 * (3 + sqrt(10))^(8*n - 6) / 1600).
a(3n-1) = floor( 9/160 * (3 + sqrt(10))^(8*n - 4)).
a(3n) = floor((20 - 7*sqrt(10))^ 2 * (3 + sqrt(10))^(8*n) / 1600).
(End)
Also heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015
LINKS
Eric Weisstein's World of Mathematics, Heptagonal Square Number.
Index entries for linear recurrences with constant coefficients, signature (1,0,2079362,-2079362,0,-1,1).
FORMULA
O.g.f.: -x*(1 + 80*x + 5848*x^2 + 222070*x^3 + 5848*x^4 + 80*x^5 + x^6) / ( (x-1)*(x^6 - 2079362*x^3 + 1) ).
From Richard Choulet, May 08 2009: (Start)
With the first values, for n>=0, a(n+9) = 2079363*(a(n+6) - a(n+3)) + a(n).
On every bisection modulo 2: a(n+1) = 1039681*a(n) + 116964 + 164388*sqrt(40*a(n)^2 + 9*a(n)).
On every bisection modulo 2: a(n+2) = 2079362*a(n+1) - a(n) + 233928. (End)
From Ant King, Nov 11 2011: (Start)
a(n) = a(n-1) + 2079362*a(n-3) - 2079362*a(n-4) - a(n-6) + a(n-7).
a(n) = 2079362*a(n-3) - a(n-6) + 233928.
(End)
From Jonathan Pappas, Jan 16 2022: (Start)
Define the three sequences
b(n) = 1442*b(n-1) - b(n-2) for n >= 2, with b(0) = -77, b(1) = 1;
c(n) = 1442*c(n-1) - c(n-2) for n >= 2, with c(0) = -9, c(1) = 9; and
d(n) = 1442*d(n-1) - d(n-2) for n >= 2, with d(0) = -1, d(1) = 77.
Then, for n >= 1,
a(3n - 2) = b(n)^2,
a(3n - 1) = c(n)^2, and
a(3n) = d(n)^2.
(End)
MAPLE
A036354 := proc(n)
if n <= 7 then
op(n, [1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609]);
else
procname(n-1) +2079362 *(procname(n-3)-procname(n-4)) -procname(n-6) +procname(n-7) ;
end if;
end proc:
seq(A036354(n), n=1..12) ;
MATHEMATICA
LinearRecurrence[{ 1, 0, 2079362, -2079362, 0, -1, 1 }, {1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609 }, 13] (* Ant King, Nov 11 2011 *)
PROG
(PARI) Vec(-x*(x^6+80*x^5+5848*x^4+222070*x^3+5848*x^2+80*x+1)/((x-1)*(x^6-2079362*x^3+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)
EXTENSIONS
More terms from Eric W. Weisstein
One more term from Richard Choulet, May 08 2009
STATUS
approved