login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036353
Square pentagonal numbers.
10
0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801, 708214619789503821274338711878841001, 6800276705461824703444258688161258139001
OFFSET
0,3
COMMENTS
Lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^8 = 4801 + 1960*sqrt(6). - Ant King, Nov 06 2011
Pentagonal numbers (A000326) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015
LINKS
Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.
Byungchan Kim, Eunmi Kim, and Jeremy Lovejoy, On weighted overpartitions related to some q-series in Ramanujan's lost notebook, Int'l J. Number Theory (2021). Also at Université de Paris (France, 2020).
Eric Weisstein's World of Mathematics, Pentagonal Square Number
FORMULA
a(n) = 9602*a(n-1) - a(n-2) + 200; g.f.: x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)). - Warut Roonguthai, Jan 05 2001
a(n+1) = 4801*a(n)+100+980*(24*a(n)^2+a(n))^(1/2). - Richard Choulet, Sep 21 2007
From Ant King, Nov 06 2011: (Start)
a(n) = floor(1/96*(sqrt(2) + sqrt(3))^(8*n-4)).
a(n) = 9603*a(n-1) - 9603*a(n-2) + a(n-3).
(End)
MATHEMATICA
Table[Floor[1/96 ( Sqrt[2] + Sqrt[3] ) ^ ( 8*n - 4 ) ] , {n, 0, 9}] (* Ant King, Nov 06 2011 *)
LinearRecurrence[{9603, -9603, 1}, {0, 1, 9801, 94109401}, 20] (* Harvey P. Dale, Apr 14 2019 *)
PROG
(PARI) for(n=0, 10^9, g=(n*(3*n-1)/2); if(issquare(g), print(g)))
(PARI) concat(0, Vec(x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 24 2015
KEYWORD
nonn,easy
AUTHOR
Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved