login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square pentagonal numbers.
10

%I #45 Mar 24 2021 22:58:30

%S 0,1,9801,94109401,903638458801,8676736387298001,83314021887196947001,

%T 799981229484128697805801,7681419682192581869134354401,

%U 73756990988431941623299373152801,708214619789503821274338711878841001,6800276705461824703444258688161258139001

%N Square pentagonal numbers.

%C Lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^8 = 4801 + 1960*sqrt(6). - _Ant King_, Nov 06 2011

%C Pentagonal numbers (A000326) which are also centered octagonal numbers (A016754). - _Colin Barker_, Jan 11 2015

%H Colin Barker, <a href="/A036353/b036353.txt">Table of n, a(n) for n = 0..252</a>

%H Muniru A. Asiru, <a href="http://dx.doi.org/10.1080/0020739X.2016.1164346">All square chiliagonal numbers</a>, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.

%H Byungchan Kim, Eunmi Kim, and Jeremy Lovejoy, <a href="https://doi.org/10.1142/S1793042120400345">On weighted overpartitions related to some q-series in Ramanujan's lost notebook</a>, Int'l J. Number Theory (2021). Also at <a href="http://lovejoy.perso.math.cnrs.fr/Weightedoverpartitions_revised.pdf">Université de Paris</a> (France, 2020).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentagonalSquareNumber.html">Pentagonal Square Number</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (9603,-9603,1).

%F a(n) = 9602*a(n-1) - a(n-2) + 200; g.f.: x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)). - _Warut Roonguthai_, Jan 05 2001

%F a(n+1) = 4801*a(n)+100+980*(24*a(n)^2+a(n))^(1/2). - _Richard Choulet_, Sep 21 2007

%F From _Ant King_, Nov 06 2011: (Start)

%F a(n) = floor(1/96*(sqrt(2) + sqrt(3))^(8*n-4)).

%F a(n) = 9603*a(n-1) - 9603*a(n-2) + a(n-3).

%F (End)

%t Table[Floor[1/96 ( Sqrt[2] + Sqrt[3] ) ^ ( 8*n - 4 ) ] , {n, 0, 9}] (* _Ant King_, Nov 06 2011 *)

%t LinearRecurrence[{9603,-9603,1},{0,1,9801,94109401},20] (* _Harvey P. Dale_, Apr 14 2019 *)

%o (PARI) for(n=0,10^9,g=(n*(3*n-1)/2); if(issquare(g),print(g)))

%o (PARI) concat(0, Vec(x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)) + O(x^20))) \\ _Colin Barker_, Jun 24 2015

%Y Cf. A000326, A001078, A001079, A001110, A046172, A046173, A248205.

%K nonn,easy

%O 0,3

%A Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

%E More terms from _Eric W. Weisstein_