login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253920
Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).
3
1, 5, 39, 760, 6494, 55518, 1095199, 9363623, 80056197, 1579275478, 13502337152, 115440979836, 2277314143357, 19470360808841, 166465812866595, 3283885415444596, 28076246784010850, 240043586712649434, 4735360491756963355, 40485928392182836139
OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 3*x + 8*y - 2 = 0, the corresponding values of x being A046195.
FORMULA
a(n) = a(n-1)+1442*a(n-3)-1442*a(n-4)-a(n-6)+a(n-7).
G.f.: x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1) / ((x-1)*(x^6-1442*x^3+1)).
EXAMPLE
5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
MATHEMATICA
CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
LinearRecurrence[{1, 0, 1442, -1442, 0, -1, 1}, {1, 5, 39, 760, 6494, 55518, 1095199}, 20] (* Harvey P. Dale, Jul 04 2017 *)
PROG
(PARI) Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
(Magma) I:=[1, 5, 39, 760, 6494, 55518, 1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 19 2015
EXTENSIONS
Corrected by Vincenzo Librandi, Jan 20 2015
STATUS
approved