Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:11
%S 1,5,39,760,6494,55518,1095199,9363623,80056197,1579275478,
%T 13502337152,115440979836,2277314143357,19470360808841,
%U 166465812866595,3283885415444596,28076246784010850,240043586712649434,4735360491756963355,40485928392182836139
%N Indices of centered octagonal numbers (A016754) which are also heptagonal numbers (A000566).
%C Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 3*x + 8*y - 2 = 0, the corresponding values of x being A046195.
%H Colin Barker, <a href="/A253920/b253920.txt">Table of n, a(n) for n = 1..950</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1442,-1442,0,-1,1).
%F a(n) = a(n-1)+1442*a(n-3)-1442*a(n-4)-a(n-6)+a(n-7).
%F G.f.: x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1) / ((x-1)*(x^6-1442*x^3+1)).
%e 5 is in the sequence because the 5th centered octagonal number is 81, which is also the 6th heptagonal number.
%t CoefficientList[Series[(4 x^5 + 34 x^4 + 721 x^3 - 34 x^2 -4 x - 1)/((x-1) (x^6 - 1442 x^3 + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 20 2015 *)
%t LinearRecurrence[{1,0,1442,-1442,0,-1,1},{1,5,39,760,6494,55518,1095199},20] (* _Harvey P. Dale_, Jul 04 2017 *)
%o (PARI) Vec(x*(4*x^5+34*x^4+721*x^3-34*x^2-4*x-1)/((x-1)*(x^6-1442*x^3+1)) + O(x^100))
%o (Magma) I:=[1,5,39,760,6494,55518,1095199]; [n le 7 select I[n] else Self(n-1)+1442*Self(n-3)-1442*Self(n-4)-Self(n-6)+Self(n-7): n in [1..25]]; // _Vincenzo Librandi_, Jan 20 2015
%Y Cf. A000566, A016754, A046195, A036354.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 19 2015
%E Corrected by _Vincenzo Librandi_, Jan 20 2015