login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171150
Triangle related to T(x,2x).
0
1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 6, 20, 28, 15, 1, 10, 50, 85, 75, 31, 1, 20, 105, 255, 294, 186, 63, 1, 35, 245, 651, 1029, 903, 441, 127, 1, 70, 504, 1736, 3108, 3612, 2568, 1016, 255, 1, 126, 1134, 4116, 9324, 12636, 11556, 6921, 2295, 511, 1, 252, 2310, 10290, 25080, 42120, 46035, 34605, 17930, 5110, 1023, 1
OFFSET
0,4
COMMENTS
Let the triangle T_(x,y)=T defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1.
This triangle gives the coefficients of Sum_{k=0..n} T(n,k) where y=2x.
T_(0,0) = A053121, T_(1,2) = A039599, T_(2,4) = A124575.
First column of T_(x,2x) is given by A126222.
LINKS
M. Barnabei, F. Bonetti, and M. Silimbani, The Eulerian numbers on restricted centrosymmetric permutations, PU. M. A. Vol. 21 (2010), No. 2, pp. 99-118 (see Table p. 118, with additional zeros); see also, arXiv:0910.2376 [math.CO], 2009.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001405(n), A000984(n), A133158(n) for x = -1, 0, 1, 2 respectively.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 9, 7, 1;
6, 20, 28, 15, 1;
10, 50, 85, 75, 31, 1;
...
CROSSREFS
Row sums give A000984.
Sequence in context: A152440 A134319 A135091 * A111589 A259760 A010027
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 04 2009
EXTENSIONS
More terms from Alois P. Heinz, Jan 31 2023
STATUS
approved