Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 31 2023 14:19:30
%S 1,1,1,2,3,1,3,9,7,1,6,20,28,15,1,10,50,85,75,31,1,20,105,255,294,186,
%T 63,1,35,245,651,1029,903,441,127,1,70,504,1736,3108,3612,2568,1016,
%U 255,1,126,1134,4116,9324,12636,11556,6921,2295,511,1,252,2310,10290,25080,42120,46035,34605,17930,5110,1023,1
%N Triangle related to T(x,2x).
%C Let the triangle T_(x,y)=T defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1.
%C This triangle gives the coefficients of Sum_{k=0..n} T(n,k) where y=2x.
%C T_(0,0) = A053121, T_(1,2) = A039599, T_(2,4) = A124575.
%C First column of T_(x,2x) is given by A126222.
%H M. Barnabei, F. Bonetti, and M. Silimbani, <a href="http://puma.dimai.unifi.it/21_2/1_Barnabei_Bonetti_Silimbani.pdf">The Eulerian numbers on restricted centrosymmetric permutations</a>, PU. M. A. Vol. 21 (2010), No. 2, pp. 99-118 (see Table p. 118, with additional zeros); see <a href="https://arxiv.org/abs/0910.2376">also</a>, arXiv:0910.2376 [math.CO], 2009.
%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001405(n), A000984(n), A133158(n) for x = -1, 0, 1, 2 respectively.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 3, 1;
%e 3, 9, 7, 1;
%e 6, 20, 28, 15, 1;
%e 10, 50, 85, 75, 31, 1;
%e ...
%Y Cf. A000012, A000225, A058877, A126222.
%Y Row sums give A000984.
%K nonn,tabl
%O 0,4
%A _Philippe Deléham_, Dec 04 2009
%E More terms from _Alois P. Heinz_, Jan 31 2023