login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A322191(n)*x^n/n ), where A322191(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ).
2

%I #6 Jun 18 2019 07:37:22

%S 1,1,2,7,16,49,158,480,1565,5372,18168,63018,223069,790675,2837099,

%T 10275237,37365238,136780746,503454552,1860283966,6903032032,

%U 25710869751,96062102703,360005362169,1352895525992,5096746479429,19245661967963,72829157526334,276144309118166,1048989168151209,3991676310364631,15213832997014866,58073559070913632,221990591912157497,849708949683300960

%N G.f.: exp( Sum_{n>=1} A322191(n)*x^n/n ), where A322191(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ).

%H Paul D. Hanna, <a href="/A322192/b322192.txt">Table of n, a(n) for n = 0..300</a>

%F a(n) ~ c * 4^n / n^(3/2), where c = 0.585811817455537... - _Vaclav Kotesovec_, Jun 18 2019

%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 49*x^5 + 158*x^6 + 480*x^7 + 1565*x^8 + 5372*x^9 + 18168*x^10 + 63018*x^11 + 223069*x^12 + ...

%e such that

%e log( A(x) ) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 141*x^5/5 + 528*x^6/6 + 1744*x^7/7 + 6435*x^8/8 + 25225*x^9/9 + 92743*x^10/10 + 352782*x^11/11 + 1364216*x^12/12 + ... + A322191(n)*x^n/n + ...

%o (PARI) N=35;

%o {L = sum(n=1, N+1, -log(1 - (x^(2*n) - y^(2*n))/(x-y) +O(x^(2*N+1)) +O(y^(2*N+1))) ); }

%o {A322191(n) = polcoeff( n*polcoeff( L, n, x), n, y)}

%o {a(n) = polcoeff( exp( sum(m=1, n, A322191(m)*x^m/m ) +x*O(x^n) ), n) }

%o for(n=0, N, print1( a(n), ", ") )

%Y Cf. A322191.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 10 2018