login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ), for n >= 1.
2

%I #12 Dec 10 2018 11:54:48

%S 1,3,16,35,141,528,1744,6435,25225,92743,352782,1364216,5200391,

%T 20059504,77744166,300540195,1166803263,4540126119,17672632090,

%U 68923604295,269166933163,1052049488218,4116715364076,16124370433080,63205314207841,247959266485973,973478300504884,3824345303924544,15033633249770955,59132421617169838,232714176627631040,916312070471295267,3609716208975605151,14226520737620321469,56093138920627037034

%N a(n) = coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ), for n >= 1.

%H Paul D. Hanna, <a href="/A322191/b322191.txt">Table of n, a(n) for n = 1..300</a>

%e L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 141*x^5/5 + 528*x^6/6 + 1744*x^7/7 + 6435*x^8/8 + 25225*x^9/9 + 92743*x^10/10 + 352782*x^11/11 + 1364216*x^12/12 + ...

%e RELATED SERIES.

%e Given P(x) = Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)),

%e so that P(x) = 1/( (1 - (x^2-y^2)/(x-y)) * (1 - (x^4-y^4)/(x-y)) * (1 - (x^6-y^6)/(x-y)) * (1 - (x^8-y^8)/(x-y)) * (1 - (x^10-y^10)/(x-y)) * ...),

%e then

%e log( P(x) ) = (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2 + (4*x^3 + 6*x^2*y + 6*x*y^2 + 4*y^3)/3 + (1*x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + 1*y^4)/4 + (6*x^5 + 10*x^4*y + 15*x^3*y^2 + 15*x^2*y^3 + 10*x*y^4 + 6*y^5)/5 + (4*x^6 + 12*x^5*y + 24*x^4*y^2 + 32*x^3*y^3 + 24*x^2*y^4 + 12*x*y^5 + 4*y^6)/6 + (8*x^7 + 14*x^6*y + 28*x^5*y^2 + 42*x^4*y^3 + 42*x^3*y^4 + 28*x^2*y^5 + 14*x*y^6 + 8*y^7)/7 + (1*x^8 + 8*x^7*y + 28*x^6*y^2 + 56*x^5*y^3 + 70*x^4*y^4 + 56*x^3*y^5 + 28*x^2*y^6 + 8*x*y^7 + 1*y^8)/8 + (13*x^9 + 27*x^8*y + 63*x^7*y^2 + 123*x^6*y^3 + 171*x^5*y^4 + 171*x^4*y^5 + 123*x^3*y^6 + 63*x^2*y^7 + 27*x*y^8 + 13*y^9)/9 + (6*x^10 + 20*x^9*y + 60*x^8*y^2 + 140*x^7*y^3 + 235*x^6*y^4 + 282*x^5*y^5 + 235*x^4*y^6 + 140*x^3*y^7 + 60*x^2*y^8 + 20*x*y^9 + 6*y^10)/10 + ...

%e in which the coefficients of x^n*y^n/(2*n), for n >= 1, equals

%e [2, 6, 32, 70, 282, 1056, 3488, 12870, 50450, 185486, ...]

%e which is twice this sequence.

%e The exponentiation of the l.g.f. begins

%e exp( L(x) ) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 49*x^5 + 158*x^6 + 480*x^7 + 1565*x^8 + 5372*x^9 + 18168*x^10 + 63018*x^11 + 223069*x^12 + ... + A322192(n)*x^n + ...

%o (PARI) N=35;

%o {L = sum(n=1, N+1, -log(1 - (x^(2*n) - y^(2*n))/(x - y) +O(x^(2*N+1)) +O(y^(2*N+1))) ); }

%o {a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}

%o for(n=1, N, print1( a(n), ", ") )

%Y Cf. A322192.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Dec 10 2018