login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109340
Expansion of x^2*(1+x+4*x^2)/((1+x+x^2)*(1-x)^3).
1
0, 0, 1, 3, 9, 16, 24, 36, 49, 63, 81, 100, 120, 144, 169, 195, 225, 256, 288, 324, 361, 399, 441, 484, 528, 576, 625, 675, 729, 784, 840, 900, 961, 1023, 1089, 1156, 1224, 1296, 1369, 1443, 1521, 1600, 1680, 1764, 1849, 1935, 2025, 2116, 2208, 2304, 2401
OFFSET
0,4
COMMENTS
From Gerhard Kirchner, Jan 20 2017: (Start)
According to the game "Mecanix":
In a triangular arrangement of wheel axles (n rows with 1, 2, ..., n axles), a connected set of unblocked gear wheels is installed such that the number of wheel quadruples forming half-hexagons is maximal.
a(n-1) is the maximum number.
Example:
Gear wheels (*) and free axles (·):
·
* *
* * · *
· * · * * ·
* * · * * · * *
n=3 n=5
n=3: 1 half-hexagon, a(2)=1.
n=5: 3 half-hexagons and 1 full hexagon containing 6 half-hexagons -> a(4)=3+6*1=9.
See "Connected gear wheels" link.
Annotation: In such a configuration also the number of wheels is maximal. It is A007980(n). For n < 3, however, there is no half-hexagon. (End)
Floretion Algebra Multiplication Program, FAMP Code: 4tessumrokseq[A*B] with A = + .5'i + .5'j + .5'k + .5e and B = + .5i' + .5j' + .5k' + .5e; roktype: Y[15] = Y[15] + p; sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code)
FORMULA
a(n+1) - a(n) = A047240(n);
a(n) + a(n+1) + a(n+2) = A056107(n);
a(n+2) - a(n+1) + a(n) = A105770(n).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=9. - Harvey P. Dale, Jun 24 2013
a(n) = (n-1)^2 - ((n+1) mod 3) mod 2, n >= 1. - Gerhard Kirchner, Jan 20 2017
E.g.f.: (exp(x)*(2 + 3*(x - 1)*x) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Dec 23 2022
MATHEMATICA
CoefficientList[Series[x^2(1+x+4x^2)/((1+x+x^2)(1-x)^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 1, 3, 9}, 60] (* Harvey P. Dale, Jun 24 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Aug 20 2005
STATUS
approved