login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024385
a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 1 mod 4}.
0
0, 3, 9, 16, 25, 36, 49, 64, 82, 101, 122, 145, 170, 197, 227, 258, 291, 326, 363, 402, 444, 487, 532, 579, 628, 679, 733, 788, 845, 904, 965, 1028, 1094, 1161, 1230, 1301, 1374, 1449, 1527, 1606, 1687, 1770, 1855, 1942
OFFSET
1,2
FORMULA
Conjecture: a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8). G.f. x^2*(-3-3*x-x^2-2*x^3-2*x^4-2*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ). - R. J. Mathar, Oct 08 2011
a(n) = floor(A024378(n) / A000384(n+1)). - Sean A. Irvine, Jul 06 2019
CROSSREFS
Sequence in context: A109340 A339918 A354258 * A212566 A061942 A174440
KEYWORD
nonn
STATUS
approved