login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055818 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = R(0,i) = 1 for i >= 0, R(i,j) = Sum_{h=0..i-1} Sum_{m=0..j} R(h,m) for i >= 1, j >= 1. 13
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 11, 9, 4, 1, 1, 23, 24, 14, 5, 1, 1, 47, 60, 43, 20, 6, 1, 1, 95, 144, 122, 69, 27, 7, 1, 1, 191, 336, 328, 217, 103, 35, 8, 1, 1, 383, 768, 848, 640, 354, 146, 44, 9, 1, 1, 767, 1728, 2128, 1800, 1131, 543, 199, 54, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3B.

EXAMPLE

Rows begins as:

1;

1, 1;

1, 2, 1;

1, 5, 3, 1;

1, 11, 9, 4, 1;

...

MAPLE

T:= proc(i, j) option remember;

if i=0 or j=0 then 1

else add(add(T(h, m), m=0..j), h=0..i-1)

fi; end:

seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020

MATHEMATICA

T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h, 0, i-1}, {m, 0, j}]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 21 2020 *)

PROG

(PARI) T(i, j) = if(i==0 || j==0, 1, sum(h=0, i-1, sum(m=0, j, T(h, m) )));

for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Jan 21 2020

(Magma)

function T(i, j)

if i eq 0 or j eq 0 then return 1;

else return (&+[(&+[T(h, m): m in [0..j]]): h in [0..i-1]]);

end if; return T; end function;

[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020

(Sage)

@CachedFunction

def T(i, j):

if (i==0 or j==0): return 1

else: return sum(sum(T(h, m) for m in (0..j)) for h in (0..i-1))

[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

(GAP)

T:= function(i, j)

if i=0 or j=0 then return 1;

else return Sum([0..i-1], h-> Sum([0..j], m-> T(h, m) ));

fi; end;

Flat(List([0..12], n-> List([0..n], k-> T(n-k, k) ))); # G. C. Greubel, Jan 21 2020

CROSSREFS

Cf. A055819, A055820, A055821, A055822, A055823, A055824, A055825, A055826, A055827, A055828, A055829.

Sequence in context: A079213 A047884 A124328 * A106240 A340561 A097615

Adjacent sequences: A055815 A055816 A055817 * A055819 A055820 A055821

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, May 28 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:03 EST 2022. Contains 358630 sequences. (Running on oeis4.)