login
A047884
Triangle of numbers a(n,k) = number of Young tableaux with n cells and k rows (1 <= k <= n); also number of self-inverse permutations on n letters in which the length of the longest scattered (i.e., not necessarily contiguous) increasing subsequence is k.
19
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 9, 11, 4, 1, 1, 19, 31, 19, 5, 1, 1, 34, 92, 69, 29, 6, 1, 1, 69, 253, 265, 127, 41, 7, 1, 1, 125, 709, 929, 583, 209, 55, 8, 1, 1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1, 1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1
OFFSET
1,5
REFERENCES
W. Fulton, Young Tableaux, Cambridge, 1997.
D. Stanton and D. White, Constructive Combinatorics, Springer, 1986.
EXAMPLE
For n=3 the 4 tableaux are
1 2 3 . 1 2 . 1 3 . 1
. . . . 3 . . 2 . . 2
. . . . . . . . . . 3
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 9, 11, 4, 1;
1, 19, 31, 19, 5, 1;
1, 34, 92, 69, 29, 6, 1;
1, 69, 253, 265, 127, 41, 7, 1;
1, 125, 709, 929, 583, 209, 55, 8, 1;
1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1;
1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1;
...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^`if`(p=[], 0, p[1]))
([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2, [])):
seq(T(n), n=1..14); # Alois P. Heinz, Apr 16 2012, revised Mar 05 2014
MATHEMATICA
Table[ Plus@@( NumberOfTableaux/@ Reverse/@Union[ Sort/@(Compositions[ n-m, m ]+1) ]), {n, 12}, {m, n} ]
(* Second program: *)
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n== 0|| i==1, Function[p, h[p]*x^If[p == {}, 0, p[[1]] ] ] [ Join[l, Array[1&, n]]], Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n, {}]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A000085.
Cf. A049400, A049401, and A178249 which imposes contiguity.
Columns k=1-10 give: A000012, A014495, A217323, A217324, A217325, A217326, A217327, A217328, A217321, A217322. - Alois P. Heinz, Oct 03 2012
a(2n,n) gives A267436.
Sequence in context: A107735 A137570 A079213 * A124328 A368487 A055818
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Definition amended ('scattered' added) by Wouter Meeussen, Dec 22 2010
STATUS
approved