login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047887
Triangle of numbers T(n,k) = number of permutations of n things with longest increasing subsequence of length <=k (1<=k<=n).
5
1, 1, 2, 1, 5, 6, 1, 14, 23, 24, 1, 42, 103, 119, 120, 1, 132, 513, 694, 719, 720, 1, 429, 2761, 4582, 5003, 5039, 5040, 1, 1430, 15767, 33324, 39429, 40270, 40319, 40320, 1, 4862, 94359, 261808, 344837, 361302, 362815, 362879, 362880, 1, 16796
OFFSET
1,3
LINKS
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 6;
1, 14, 23, 24;
1, 42, 103, 119, 120;
1, 132, 513, 694, 719, 720;
1, 429, 2761, 4582, 5003, 5039, 5040;
...
MATHEMATICA
h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
T[n_] := Table[g[n - k, Min[n - k, k], {k}], {k, 1, n}] // Accumulate;
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 24 2016, after Alois P. Heinz *)
CROSSREFS
Rows are partial sums of A047874.
Sequence in context: A375042 A179457 A107783 * A120986 A095801 A128567
KEYWORD
nonn,easy,nice,tabl
AUTHOR
Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane
EXTENSIONS
More terms from Naohiro Nomoto, Mar 01 2002
STATUS
approved