login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047888
Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.
8
1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 6, 2, 1, 1, 42, 23, 6, 2, 1, 1, 132, 103, 24, 6, 2, 1, 1, 429, 513, 119, 24, 6, 2, 1, 1, 1430, 2761, 694, 120, 24, 6, 2, 1, 1, 4862, 15767, 4582, 719, 120, 24, 6, 2, 1, 1, 16796, 94359, 33324, 5003, 720, 120, 24, 6, 2, 1, 1, 58786, 586590
OFFSET
1,5
COMMENTS
Also a(n,k) is the dimension of the space of SL(k)-invariants in V^n tensor (V^*)^n, where V is the standard k-dimensional representation of SL(k) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
LINKS
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53, no. 2, (1990), 257-285.
EXAMPLE
Square array a(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 5, 6, 6, 6, 6, ...
1, 14, 23, 24, 24, 24, ...
1, 42, 103, 119, 120, 120, ...
1, 132, 513, 694, 719, 720, ...
MATHEMATICA
rows = 12; h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]] ; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, rows}] // Accumulate; A047888 = Table[T[n], {n, 1, rows}]; Table[A047888[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)
PROG
(PARI)
b(n, k) = {
my(x = 'x + O('x^(2*n)));
sum(i = 0, n, x^(2*i+k)/(i!*(i+k)!));
};
u(n, k) = {
my(v = Vec(matdet(matrix(k, k, i, j, b(n, abs(i-j))))));
return(vector((#v-1)\2, i, v[2*i+1] * i!^2));
};
A(n, k) = {
my(m = [; ]);
for (i = 1, k, m = concat(m, u(n, i)~));
return(m);
};
A(6, 6) \\ Gheorghe Coserea, Feb 02 2016
CROSSREFS
Rows of the array are partial sums of A047874. Cf. A047887.
Subarray of A214015.
Sequence in context: A098885 A106270 A319171 * A330964 A128704 A075259
KEYWORD
nonn,easy,nice,tabl
AUTHOR
Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane
EXTENSIONS
More terms from Naohiro Nomoto, Mar 01 2002
STATUS
approved