login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.
8

%I #51 Sep 04 2023 11:36:18

%S 1,1,1,1,2,1,1,5,2,1,1,14,6,2,1,1,42,23,6,2,1,1,132,103,24,6,2,1,1,

%T 429,513,119,24,6,2,1,1,1430,2761,694,120,24,6,2,1,1,4862,15767,4582,

%U 719,120,24,6,2,1,1,16796,94359,33324,5003,720,120,24,6,2,1,1,58786,586590

%N Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.

%C Also a(n,k) is the dimension of the space of SL(k)-invariants in V^n tensor (V^*)^n, where V is the standard k-dimensional representation of SL(k) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

%H Alois P. Heinz, <a href="/A047888/b047888.txt">Antidiagonals n = 1..44, flattened</a>

%H Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0097-3165(90)90060-A">Symmetric functions and P-recursiveness</a>, J. Combin. Theory A 53, no. 2, (1990), 257-285.

%e Square array a(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 2, 2, 2, 2, ...

%e 1, 5, 6, 6, 6, 6, ...

%e 1, 14, 23, 24, 24, 24, ...

%e 1, 42, 103, 119, 120, 120, ...

%e 1, 132, 513, 694, 719, 720, ...

%t rows = 12; h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]] ; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, rows}] // Accumulate; A047888 = Table[T[n], {n, 1, rows}]; Table[A047888[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 06 2014, after _Alois P. Heinz_ *)

%o (PARI)

%o b(n, k) = {

%o my(x = 'x + O('x^(2*n)));

%o sum(i = 0, n, x^(2*i+k)/(i!*(i+k)!));

%o };

%o u(n, k) = {

%o my(v = Vec(matdet(matrix(k, k, i, j, b(n, abs(i-j))))));

%o return(vector((#v-1)\2, i, v[2*i+1] * i!^2));

%o };

%o A(n, k) = {

%o my(m = [;]);

%o for (i = 1, k, m = concat(m, u(n, i)~));

%o return(m);

%o };

%o A(6, 6) \\ _Gheorghe Coserea_, Feb 02 2016

%Y Rows of the array are partial sums of A047874. Cf. A047887.

%Y Subarray of A214015.

%K nonn,easy,nice,tabl

%O 1,5

%A Eric Rains (rains(AT)caltech.edu), _N. J. A. Sloane_

%E More terms from _Naohiro Nomoto_, Mar 01 2002