login
A128567
Matrix square, T(n,k), of Parker's partition triangle A047812, read by rows (n >= 1 and 0 <= k <= n-1).
3
1, 2, 1, 5, 6, 1, 14, 31, 14, 1, 42, 133, 117, 22, 1, 132, 587, 813, 300, 36, 1, 429, 2531, 4871, 2896, 692, 52, 1, 1430, 10950, 27743, 23961, 9206, 1430, 76, 1, 4862, 47185, 151208, 175734, 96418, 24598, 2798, 104, 1, 16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1
OFFSET
1,2
COMMENTS
Column 0 is the Catalan numbers (A000108). Parker's partition triangle may be defined as: A047812(n,k) = [q^(n*k+k)] in the central q-binomial coefficient [2*n,n] for n >= 1 and 0 <= k <= n-1. [Edited by Petros Hadjicostas, May 30 2020]
LINKS
R. K. Guy, Parker's permutation problem involves the Catalan numbers, preprint, 1992. (Annotated scanned copy)
R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
Wikipedia, E. T. Parker.
FORMULA
T(n,k) = Sum_{s=k..n-1} A047812(n,s)*A047812(s+1,k) for n >= 1 and 0 <= k <= n-1. - Petros Hadjicostas, May 31 2020
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
1;
2, 1;
5, 6, 1;
14, 31, 14, 1;
42, 133, 117, 22, 1;
132, 587, 813, 300, 36, 1;
429, 2531, 4871, 2896, 692, 52, 1;
1430, 10950, 27743, 23961, 9206, 1430, 76, 1;
4862, 47185, 151208, 175734, 96418, 24598, 2798, 104, 1;
16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1;
...
PROG
(PARI) {T(n, k)=local(M); M=matrix(n+1, n+1, r, c, if(r<c, 0, if(r==0, 1, polcoeff(prod(j=r+1, 2*r, 1-q^j)/prod(j=1, r, 1-q^j), (r+1)*(c-1), q)))); (M^2)[n+1, k+1]}
/* To display the data using the above program: */
vector(10, n, vector(n, k, T(n-1, k-1))) \\ Petros Hadjicostas, May 31 2020
CROSSREFS
Cf. A000108 (column k=0), A047812, A128568 (column k=1), A128569 (column k=2), A128602 (row sums).
Sequence in context: A047887 A120986 A095801 * A345394 A217204 A179455
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 12 2007
EXTENSIONS
Name edited and offset changed by Petros Hadjicostas, May 30 2020
STATUS
approved