login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128564
Triangle, read by rows, where T(n,k) equals the number of permutations of {1..n+1} with [(nk+k)/2] inversions for n>=k>=0.
6
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 9, 22, 15, 1, 1, 29, 90, 90, 29, 1, 1, 49, 359, 573, 359, 98, 1, 1, 174, 1415, 3450, 3450, 1415, 174, 1, 1, 285, 5545, 17957, 29228, 21450, 5545, 628, 1, 1, 1068, 21670, 110010, 230131, 230131, 110010, 21670, 1068, 1
OFFSET
0,5
COMMENTS
Row sums equal 2*n! for n>0.
LINKS
FORMULA
T(n,k) = A008302(n+1, [(nk+k)/2]) = coefficient of q^[(nk+k)/2] in the q-factorial of n+1 for n>=0.
EXAMPLE
Row sums equal 2*n! for n>0:
[1, 2, 4, 12, 48, 240, 1440, 10080, 80640, ..., 2*n!,...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 5, 1;
1, 9, 22, 15, 1;
1, 29, 90, 90, 29, 1;
1, 49, 359, 573, 359, 98, 1;
1, 174, 1415, 3450, 3450, 1415, 174, 1;
1, 285, 5545, 17957, 29228, 21450, 5545, 628, 1;
1, 1068, 21670, 110010, 230131, 230131, 110010, 21670, 1068, 1;
1, 1717, 84591, 526724, 1729808, 2409581, 1729808, 686763, 84591, 4015, 1;
...
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u+j-1, o-j)*x^(u+j-1), j=1..o)+
add(b(u-j, o+j-1)*x^(u-j), j=1..u)))
end:
T:= (n, k)-> coeff(b(n+1, 0), x, iquo((n+1)*k, 2)):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, May 02 2017
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[u + j - 1, o - j]* x^(u+j-1), {j, 1, o}] + Sum[b[u-j, o+j-1]*x^(u-j), {j, 1, u}]]];
T[n_, k_] := Coefficient[b[n+1, 0], x, Quotient[(n+1)*k, 2]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
PROG
(PARI) {T(n, k)=local(faq=prod(j=1, n+1, (1-q^j)/(1-q))); polcoeff(faq, (n*k+k)\2, q)}
CROSSREFS
Cf. A008302 (Mahonian numbers); A128565 (column 1), A128566 (column 2).
Row sums give A098558.
Sequence in context: A197217 A197242 A375861 * A196636 A196641 A197090
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 12 2007
STATUS
approved