login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128561
a(n) = denominator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...,r(n)] = n^2, for every positive integer n.
2
1, 3, 5, 21, 25, 539, 975, 847, 43095, 112651, 146523, 639331, 3663075, 69321747, 885243125, 19340767413, 25672050625, 381540593511, 189973174625, 12778871553, 886736325865, 1491476865543, 69915748770125, 305795988649809
OFFSET
1,2
FORMULA
For n >= 4, r(n) = -16*(n-1)*(n-2)/((2n-1)*(2n-5)*r(n-1)).
EXAMPLE
4^2 = 16 = 1 + 1/(1/3 +1/(-24/5 + 21/20)).
5^2 = 25 = 1 + 1/(1/3 +1/(-24/5 + 1/(20/21 -25/112))).
MAPLE
L2cfrac := proc(L, targ) local a, i; a := 1/(targ-op(1, L)) ; for i from 2 to nops(L) do a := 1/(a-op(i, L)) ; od: RETURN(a) ; end: A128561 := proc(nmax) local b, n, bnxt; b := [1] ; for n from 2 to nmax do bnxt := L2cfrac(b, n^2) ; b := [op(b), bnxt] ; od: [seq( denom(b[i]), i=1..nops(b))] ; end: A128561(30) ; # R. J. Mathar, Oct 09 2007
CROSSREFS
Cf. A128560.
Sequence in context: A331395 A086175 A065926 * A032414 A062225 A288152
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 10 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved