login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217324
Number of self-inverse permutations in S_n with longest increasing subsequence of length 4.
2
1, 4, 19, 69, 265, 929, 3356, 11626, 41117, 142206, 499836, 1734328, 6099193, 21282265, 75125770, 263906332, 936517637, 3313246237, 11827430209, 42139231729, 151339387003, 542857007499, 1961171657524, 7079621540798, 25720257983591, 93396276789196
OFFSET
4,2
COMMENTS
Also the number of Young tableaux with n cells and 4 rows.
LINKS
FORMULA
a(n) = A182172(n,4)-A182172(n,3) = A005817(n)-A001006(n).
EXAMPLE
a(4) = 1: 1234.
a(5) = 4: 12354, 12435, 13245, 21345.
a(6) = 19: 123654, 124365, 125436, 125634, 126453, 132465, 132546, 143256, 145236, 153426, 163452, 213465, 213546, 214356, 321456, 341256, 423156, 523416, 623451.
MAPLE
a:= proc(n) option remember; `if`(n<4, 0, `if`(n=4, 1,
((2+n)*(30*n^5+199*n^4-374*n^3-1537*n^2-406*n+408)*a(n-1)
-4*(n-1)*(n-2)*(120*n^4+46*n^3-471*n^2+371*n+204)*a(n-3)
+(n-1)*(285*n^5-262*n^4-2755*n^3-1520*n^2+820*n-48)*a(n-2)
-48*(n-1)*(n-3)*(3*n+7)*(5*n+4)*(n-2)^2*a(n-4))/
((n-4)*(5*n-1)*(3*n+4)*(n+4)*(n+3)*(n+2))))
end:
seq(a(n), n=4..40);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, Function[p, h[p]*x^If[p == {}, 0, p[[1]]]][Join[l, Array[1&, n]]], Sum[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]];
a[n_] := a[n] = Coefficient[g[n, n, {}], x, 4];
Table[Print[n, " ", a[n]]; a[n], {n, 4, 40}]
(* or: *)
MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
a[n_] := CatalanNumber[Quotient[n+1, 2]]*CatalanNumber[Quotient[n+2, 2]] - MotzkinNumber[n];
Table[a[n], {n, 4, 40}]
(* Jean-François Alcover, Oct 27 2021, after Alois P. Heinz in A047884 and second formula *)
CROSSREFS
Column k=4 of A047884.
Sequence in context: A100185 A357251 A291888 * A129019 A167247 A267192
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 30 2012
STATUS
approved