OFFSET
0,5
COMMENTS
Based on a question from Cees H. Elzinga (ch.elzinga(AT)tiscali.nl), Dec 30 2002
FORMULA
More generally, let f(m, n, k) be the number of such sets in an m X n checkerboard. Then f(m, n, k) = sum_{k-1<=m'<m, k-1<=n'<n, m+n+m'+n' even} f(m', n', k-1).
G.f.: sum_{m>=0, n>=0, k>=0} f(m, n, k) x^m y^n z^k = (1+x)(1+y)/((1-x^2)(1-y^2)+x y z(1+x y)).
T(n, 0) = T(n, n) = 1. T(n, 1) = ceiling(n^2/2). T(n, 2) = (n^2 (n^2-2n+4))/16 if n is even, ((n-1)^2 (n^2+3))/16 if n is odd. T(n, n-1) = n. T(n, n-2) = (n-1)(3n-4)/2.
G.f. (conjectured): sum_{n>=0, k>=0} T(n, k) x^n y^k = sqrt((1+x)/((1+x-x y)((1-x)^2 - x y(1+x)))).
Conjecture: sum_{k=0..n} T(n, k) = A025565(n+1).
EXAMPLE
T(5,3)=22; one of the 22 sets of 3 is shown by the asterisks below; the 'o's denote black squares not in the set.
*.o.o
.*.o.
o.o.*
.o.o.
o.o.o
MATHEMATICA
f[m_, n_, 0] := 1; f[m_, n_, k_] := f[m, n, k]=Sum[If[EvenQ[m+n+mp+np], f[mp, np, k-1], 0], {mp, k-1, m-1}, {np, k-1, n-1}]; T[n_, k_] := f[n, n, k]; Flatten[Table[T[n, k], {n, 0, 11}, {k, 0, n}]]
CROSSREFS
KEYWORD
AUTHOR
Dean Hickerson, Jan 02 2003
STATUS
approved