login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160364
Let f be defined as in A159885 and f^k be the k-th iteration of f. Then a(n) is the least k for which either {A000120(f^k(2n+1)) < A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2)<=A006694(n)} or {A000120(f^k(2n+1))<=A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2) < A006694(n)}
0
2, 1, 1, 5, 3, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 5, 2, 5, 3, 33, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 5, 10, 1, 1, 2, 5, 5, 1, 1
OFFSET
1,1
COMMENTS
Using induction, one can prove that the Collatz (3x+1)-conjecture follows from the finiteness of a(n) for every n.
EXAMPLE
Beginning with n=1, we have f(2n+1)=f(3)=5. Here A000120(3)=A000120(5)=2 and A006694((3-1)/2)= A006694((5-1)/2)=1. None of values did not become less than. Therefore a(1)>1. Since f(5)=1 and A000120(1)=1 and A006694(0)=0, then a(2)=2.
KEYWORD
nonn,uned
AUTHOR
Vladimir Shevelev, May 11 2009
STATUS
approved