login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160266
Let f and its k-fold iteration f^k be defined as in A159885. a(n) is the least k for which A006694( (f^k(2n+1)-1)/2 ) < A006694(n).
7
2, 1, 1, 2, 4, 2, 1, 1, 6, 1, 2, 1, 1, 5, 1, 1, 1, 6, 1, 4, 3, 1, 2, 1, 1, 2, 1, 1, 10, 5, 1, 1, 8, 1, 1, 1, 1, 1, 2, 1, 40, 1, 1, 1, 1, 1, 6, 3, 1, 7, 17, 1, 36, 1, 1, 2, 1, 1, 1, 20, 1, 1, 1, 1, 8, 1, 1, 18, 13, 1, 5, 1, 2, 6, 1, 1, 1, 1, 1, 1, 6, 1, 9, 11, 2, 9, 1, 2, 9, 4, 6, 1, 1, 1, 9, 7, 1, 7, 29, 2, 2, 1
OFFSET
1,1
COMMENTS
Conjecture. For every n>=1, there exists a finite value of a(n). It is easy to see that this conjecture is equivalent to the well known Collatz 3n+1 conjecture.
MAPLE
A006519 := proc(n) local i ; for i in ifactors(n)[2] do if op(1, i) = 2 then return op(1, i)^op(2, i) ; fi ; od: return 1 ; end proc:
f := proc(twon1) local threen2 ; threen2 := 3*twon1/2+1/2 ; threen2/A006519(threen2) ; end proc:
A160266 := proc(n) local ref, k, fk ; ref := A006694(n) ; k := 1 ; fk := f(2*n+1) ; while true do if A006694( (fk-1)/2 ) < ref then return k; end if; fk := f(fk) ; k := k+1 ; end do ; end proc:
seq(A160266(n), n=1..120) ; # R. J. Mathar, Feb 02 2010
MATHEMATICA
A006519[n_] := Do[If[fi[[1]] == 2, Return[2^fi[[2]]], Return[1]], {fi, FactorInteger[n]}];
f[n_] := With[{n2 = 3 n/2 + 1/2}, n2/A006519[n2]];
A006694[n_] := Sum[EulerPhi[d]/MultiplicativeOrder[2, d], {d, Divisors[2n + 1]}] - 1;
a[n_] := Module[{ref, k, fk}, ref = A006694[n]; k = 1; fk = f[2n + 1]; While[True, If[A006694[(fk - 1)/2] < ref, Return[k]]; fk = f[fk]; k++]];
Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 28 2024, after R. J. Mathar *)
PROG
(PARI)
f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2);
A006519(n) = (1<<valuation(n, 2));
A006694(n) = (sumdiv(2*n+1, d, eulerphi(d)/znorder(Mod(2, d))) - 1); \\ From A006694
A160266(n) = { my(w=A006694(n), n = (n+n+1), k=0); while(A006694((n-1)/2) >= w, k++; n = f(n)); (k); }; \\ Antti Karttunen, Sep 22 2018
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Vladimir Shevelev, May 07 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 02 2010
STATUS
approved