OFFSET
0,6
COMMENTS
As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.
FORMULA
EXAMPLE
First few rows of the triangle =
1;
1, 1;
1, 1, 2;
1, 1, 2, 4;
2, 1, 2, 4, 8;
3, 2, 2, 4, 8, 17;
6, 3, 4, 4, 8, 17, 36;
11, 6, 6, 8, 8, 17, 36, 78;
23, 11, 12, 12, 16, 17, 36, 78, 170;
47, 23, 22, 24, 24, 34, 36, 78, 170, 375;
106, 47, 46, 44, 48, 51, 72, 78, 170, 375, 833;
235, 106, 94, 92, 88, 102, 108, 156, 170, 375, 833, 1870;
...
Row 5 = (3, 2, 2, 4, 8, 17) = termwise products of (3, 2, 1, 1, 1, 1) and (1, 1, 2, 4, 8, 17).
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1)];
t[n_] := t[n] = If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 1, n - 1}] - If[OddQ[n], 0, b[n/2]])/2];
u[n_] := u[n] = If[n <= 0, 1, Sum[t[i] u[n - i - 1], {i, 0, n}]];
c[0] = 0; c[1] = 1; c[n_] := c[n] = Sum[d c[d] c[n - j], {j, 1, n - 1}, {d, Divisors[j]}]/(n - 1);
v[0] = 1; v[n_] := c[n] - (Sum[c[k] c[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, c[n/2], 0])/2;
T[n_, k_] := v[n - k] u[k - 1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 21 2020, after Alois P. Heinz in A000055 and A157904 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 08 2009
STATUS
approved