login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137570
Square array, read by antidiagonals, where row n+1 equals the partial sums of the previous row after removing the terms in positions {n, n+1} from row n for n>=0, with row 0 equal to all 1's.
3
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 6, 10, 4, 1, 1, 7, 29, 16, 5, 1, 1, 8, 36, 60, 23, 6, 1, 1, 9, 44, 186, 100, 31, 7, 1, 1, 10, 53, 230, 397, 150, 40, 8, 1, 1, 11, 63, 283, 1281, 681, 211, 50, 9, 1, 1, 12, 74, 346, 1564, 2802, 1051, 284, 61, 10, 1, 1, 13, 86, 420, 1910, 9294, 4908
OFFSET
0,5
FORMULA
G.f.: A(x,y) = D(xy)/[(1 - yF(xy)) + xC(xy)F(xy)^2/(1 - xC(xy))], where D(x) = 1/[1 - xC(x)F(x)^2 - xF(x)^3)] is the g.f. of the main diagonal (A137571), C(x) = g.f. of Catalan numbers (A000108) and F(x) = g.f. of A002293; thus the g.f. of n-th lower diagonal = D(x)*F(x)^2*C(x)^n and the g.f. of n-th upper diagonal = D(x)*F(x)^n.
EXAMPLE
Square array begins:
(1),(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1,(2),(3), 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...;
1, 5,(10),(16), 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, ...;
1, 6, 29,(60),(100), 150, 211, 284, 370, 470, 585, 716, 864, ...;
1, 7, 36, 186,(397),(681), 1051, 1521, 2106, 2822, 3686, 4716, ...;
1, 8, 44, 230, 1281,(2802),(4908), 7730, 11416, 16132, 22063, ...;
1, 9, 53, 283, 1564, 9294,(20710),(36842), 58905, 88319, 126730, ...;
1, 10, 63, 346, 1910, 11204, 70109,(158428),(285158), 461190, ...;
1, 11, 74, 420, 2330, 13534, 83643, 544833,(1244413),(2260257), ...;
...
For each row, remove the terms along the diagonals (in parenthesis),
and then take partial sums to obtain the next row.
GENERATING FUNCTIONS.
The g.f. of n-th lower diagonal equals D(x)*F(x)^2*C(x)^n and
the g.f. of n-th upper diagonal equals D(x)*F(x)^n,
where D(x) is g.f. of main diagonal (A137571):
[1, 2, 10, 60, 397, 2802, 20710, 158428, 1244413, 9980220, ...]
defined by:
D(x) = 1/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
PROG
(PARI) T(n, k)=if(k<0, 0, if(n==0, 1, T(n, k-1) + if(n-1>k, T(n-1, k), T(n-1, k+2))))
(PARI) /* Using Formula for G.F.: */ T(n, k)=local(m=max(n, k)+1, C, F, D, A); C=subst(Ser(vector(m, r, binomial(2*r-2, r-1)/r)), x, x*y); F=subst(Ser(vector(m, r, binomial(4*r-4, r-1)/(3*r-2))), x, x*y); D=1/(1-x*y*C*F^2-x*y*F^3); A=D*(1/(1-y*F) + x*C*F^2/(1-x*C)); polcoeff(polcoeff(A+O(x^m), n, x)+O(y^m), k, y)
CROSSREFS
Cf. A130523 (variant); diagonals: A137571, A137572, A137573; related: A000108, A002293.
Sequence in context: A100398 A160364 A107735 * A079213 A047884 A124328
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 27 2008
STATUS
approved