Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 21 2022 21:37:19
%S 1,63,192,432,832,1452,2364,3653,5418,7773,10848,14790,19764,25954,
%T 33564,42819,53966,67275,83040,101580,123240,148392,177436,210801,
%U 248946,292361,341568,397122,459612,529662
%N a(n) = T(n,n-6), array T as in A055807.
%H G. C. Greubel, <a href="/A055811/b055811.txt">Table of n, a(n) for n = 6..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _G. C. Greubel_, Jan 23 2020: (Start)
%F a(n) = n*(1584 - 310*n - 85*n^2 + 10*n^3 + n^4)/120 for n > 6, with a(6) = 1.
%F G.f.: x^6*(1 + 57*x - 171*x^2 + 205*x^3 - 125*x^4 + 39*x^5 - 5*x^6)/(1-x)^6.
%F E.g.f.: (-1)*x*(7200 +4320*x +720*x^2 -120*x^3 -54*x^4 +5*x^5 - (7200 -2880*x + 120*x^3 + 6*x^4)*exp(x))/720. (End)
%p seq( `if`(n=6, 1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120), n=6..30); # _G. C. Greubel_, Jan 23 2020
%t Table[If[n==6,1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120], {n,6,30}] (* _G. C. Greubel_, Jan 23 2020 *)
%o (PARI) vector(25, n, my(m=n+5); if(m==6,1, m*(1584 -310*m -85*m^2 +10*m^3 +m^4)/120) ) \\ _G. C. Greubel_, Jan 23 2020
%o (Magma) [1] cat [n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120: n in [7.30]]; // _G. C. Greubel_, Jan 23 2020
%o (Sage) [1]+[n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 for n in (7..30)] # _G. C. Greubel_, Jan 23 2020
%o (GAP) Concatenation([1], List([7..30], n-> n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 )); # _G. C. Greubel_, Jan 23 2020
%Y Cf. A055807, A055809, A055810, A055815, A055816, A055817.
%K nonn,easy
%O 6,2
%A _Clark Kimberling_, May 28 2000