login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048379
Apply the transformation 0->1->2->3->4->5->6->7->8->9->0 to digits of n.
26
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39, 30, 41, 42, 43, 44, 45, 46, 47, 48, 49, 40, 51, 52, 53, 54, 55, 56, 57, 58, 59, 50, 61, 62, 63, 64, 65, 66, 67, 68, 69, 60, 71, 72, 73, 74, 75, 76, 77, 78, 79, 70, 81, 82
OFFSET
0,2
COMMENTS
This is the same as a(n) = 1*n in the arithmetic defined in A169918 (cf. A169930). - M. F. Hasler, Mar 25 2015
LINKS
FORMULA
a(A002283(n)) = 0. - Reinhard Zumkeller, Feb 21 2014
EXAMPLE
a(8) = 9.
a(9) = 0.
a(10) = 21 because the original 1 is changed to a 2 and the 0 is changed to a 1.
MATHEMATICA
Table[FromDigits[ReplaceAll[IntegerDigits[n] + 1, 10 -> 0]], {n, 0, 79}] (* Alonso del Arte, Feb 27 2014 *)
PROG
(Haskell)
a048379 n = if n == 0 then 1 else x n where
x m = if m == 0 then 0 else 10 * x m' + (d + 1) `mod` 10
where (m', d) = divMod m 10
-- Reinhard Zumkeller, Feb 21 2014
(PARI) A048379(n)=n+sum(i=1, #n=digits(n), if(n[i]<9, 10^(i-1), -9*10^(i-1))) \\ M. F. Hasler, Mar 21 2015
(PARI) A048379(n)=!n+apply(t->(t+1)%10, n=digits(n))*vector(#n, i, 10^(#n-i))~ \\ M. F. Hasler, Mar 21 2015
(Python)
d = {ord(str(i)):ord(str((i+1)%10)) for i in range(10)}
def a(n): return int(str(n).translate(d))
print([a(n) for n in range(72)]) # Michael S. Branicky, Dec 20 2022
CROSSREFS
Sequence in context: A083116 A084044 A169930 * A333666 A033307 A007376
KEYWORD
nonn,base,easy
AUTHOR
Patrick De Geest, Mar 15 1999
STATUS
approved