|
|
A240857
|
|
Triangle read by rows: T(0,0) = 0; T(n+1,k) = T(n,k+1), 0 <= k < n; T(n+1,n) = T(n,0); T(n+1,n+1) = T(n,0)+1.
|
|
7
|
|
|
0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 3, 0, 1, 1, 2, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
COMMENTS
|
Let h be the initial term of row n, to get row n+1, remove h and then append h and h+1;
For n > 0: T(n,A035327(n)) = 0.
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
|
|
FORMULA
|
T(n,k) = A048881(n+k), 0 <= k <= n.
|
|
EXAMPLE
|
. 0: 0
. 1: 0 1
. 2: 1 0 1
. 3: 0 1 1 2
. 4: 1 1 2 0 1
. 5: 1 2 0 1 1 2
. 6: 2 0 1 1 2 1 2
. 7: 0 1 1 2 1 2 2 3
. 8: 1 1 2 1 2 2 3 0 1
. 9: 1 2 1 2 2 3 0 1 1 2
. 10: 2 1 2 2 3 0 1 1 2 1 2
. 11: 1 2 2 3 0 1 1 2 1 2 2 3
. 12: 2 2 3 0 1 1 2 1 2 2 3 1 2
. 13: 2 3 0 1 1 2 1 2 2 3 1 2 2 3
. 14: 3 0 1 1 2 1 2 2 3 1 2 2 3 2 3
. 15: 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 .
|
|
PROG
|
(Haskell)
a240857 n k = a240857_tabl !! n !! k
a240857_row n = a240857_tabl !! n
a240857_tabl = iterate (\(x:xs) -> xs ++ [x, x + 1]) [0]
|
|
CROSSREFS
|
Cf. A048881 (left edge), A000120 (right edge), A000788 (row sums), A000523 (row maxima), A240883 (central terms).
Sequence in context: A137412 A355913 A025925 * A109066 A079066 A157188
Adjacent sequences: A240854 A240855 A240856 * A240858 A240859 A240860
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Reinhard Zumkeller, Apr 14 2014
|
|
STATUS
|
approved
|
|
|
|