login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240859
Cubes k^3 such that k^3 + (k+1)^3 is semiprime.
5
1, 8, 27, 125, 216, 512, 2744, 3375, 8000, 9261, 35937, 68921, 125000, 157464, 328509, 421875, 474552, 704969, 729000, 970299, 1157625, 1367631, 1685159, 2248091, 2628072, 2803221, 3581577, 3723875, 4741632, 5177717, 5451776, 6751269, 7301384, 9129329, 9938375
OFFSET
1,2
LINKS
EXAMPLE
a(2) = 8 = 2^3: 2^3 + 3^3 = 35 = 5*7 which is a semiprime.
a(4) = 125 = 5^3: 5^3 + 6^3 = 341 = 11*31 which is a semiprime.
MAPLE
with(numtheory):KD:= proc() local a, b; a:=n^3+(n+1)^3; b:=bigomega(a); if b=2 then RETURN (n^3); fi; end: seq(KD(), n=1..500);
MATHEMATICA
Transpose[Select[Partition[Range[250]^3, 2, 1], PrimeOmega[Total[#]] == 2&]] [[1]] (* Harvey P. Dale, Dec 15 2015 *)
PROG
(PARI) forprime(p=3, 1e4, if(isprime((p^2+3)/4), print1((p^3 - 3*p^2 + 3*p - 1)/8", "))) \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
Sequence in context: A030162 A153147 A062838 * A277047 A046452 A030078
KEYWORD
nonn,easy
AUTHOR
K. D. Bajpai, Apr 13 2014
STATUS
approved