|
|
A240854
|
|
Number of partitions p of n into distinct parts not including 2*min(p).
|
|
3
|
|
|
0, 1, 1, 1, 2, 3, 2, 4, 5, 5, 8, 9, 10, 13, 15, 19, 23, 26, 30, 38, 45, 49, 60, 70, 80, 95, 110, 126, 145, 167, 191, 223, 254, 286, 330, 376, 426, 486, 551, 622, 708, 797, 896, 1015, 1141, 1283, 1444, 1620, 1811, 2031, 2274, 2538, 2839, 3166, 3527, 3933
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Table of n, a(n) for n=0..55.
|
|
FORMULA
|
a(n) + A240853(n) = A000009(n) for n >= 0.
|
|
EXAMPLE
|
a(9) counts these 5 partitions: 9, 81, 72, 54, 531.
|
|
MATHEMATICA
|
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; MemberQ[p, 2*Min[p]]], {n, 0, z}] (* A240853 *)
Table[Count[f[n], p_ /; !MemberQ[p, 2*Min[p]]], {n, 0, z}] (* A240854 *)
|
|
CROSSREFS
|
Cf. A240854, A000009.
Sequence in context: A178853 A120641 A008666 * A286621 A295876 A322590
Adjacent sequences: A240851 A240852 A240853 * A240855 A240856 A240857
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 14 2014
|
|
STATUS
|
approved
|
|
|
|