login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064182
Sum_{k <= 10^n} number of distinct primes dividing k (A001221).
1
0, 11, 171, 2126, 24300, 266400, 2853708, 30130317, 315037281, 3271067968, 33787242719, 347589015681, 3564432632541, 36457601891708, 372096179850464, 3790896863469849, 38562555830676602, 391760068087338367, 3975397006170581823, 40066272402579605194
OFFSET
0,2
COMMENTS
This is just a subsequence of A013939. - N. J. A. Sloane, Jul 16 2011
FORMULA
a(n) = Sum_{k, 1, limit}, PrimePi(10^n/k); which seems to be about 10^n/2.
On the contrary, I guess that a(n) ~ 10^n * log n. - Charles R Greathouse IV, Jul 13 2011
a(n) ~ 10^n * (0.26149721284764278375 + log(log(10^n))). - Hiroaki Yamanouchi, Jul 10 2014
MATHEMATICA
s = 0; k = 2; Do[ While[ k <= 10^n, s = s + PrimeNu@ k; k++ ]; Print[ s], {n, 8}]
PROG
(PARI) a(n)=sum(k=1, 10^n, omega(k)) \\ Charles R Greathouse IV, Jul 13 2011
(PARI) a(n)=sum(k=1, 10^n\2, primepi(10^n\k)) \\ Charles R Greathouse IV, Jul 13 2011
CROSSREFS
Sequence in context: A167245 A331929 A205087 * A139792 A025758 A243677
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 20 2001
EXTENSIONS
a(11)-a(13) from Giovanni Resta, Oct 26 2012
a(14)-a(16) from Hiroaki Yamanouchi, Jun 29 2014
a(17) from Hiroaki Yamanouchi, Jul 10 2014
a(18) from Henri Lifchitz, Aug 25 2014
a(19) from Henri Lifchitz, Dec 17 2017
STATUS
approved