login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139792
First quadrisection of A139763 (1, 2, 3, 4, 11, ...).
4
1, 11, 171, 2731, 43691, 699051, 11184811, 178956971, 2863311531, 45812984491, 733007751851, 11728124029611, 187649984473771, 3002399751580331, 48038396025285291, 768614336404564651, 12297829382473034411, 196765270119568550571, 3148244321913096809131
OFFSET
0,2
FORMULA
a(n) = 16*a(n-1) - 5.
a(n) = 10*A131865(n) + 1.
G.f.: ( 1-6*x ) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: (exp(x) + 2*exp(16*x))/3. - G. C. Greubel, Nov 03 2018
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n+1).
a(n+1) - a(n) = 10*A001025(n). (End)
MATHEMATICA
Table[(1 + 2^(4*n+1))/3, {n, 0, 20}] (* G. C. Greubel, Nov 03 2018 *)
PROG
(Magma) [(1+2*16^n)/3: n in [0..20]]; // Vincenzo Librandi, Aug 09 2011
(PARI) vector(20, n, n--; (1 + 2^(4*n+1))/3) \\ G. C. Greubel, Nov 03 2018
CROSSREFS
Second quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A144864 (third), and A141060 (fourth).
Sequence in context: A331929 A205087 A064182 * A025758 A243677 A374302
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 21 2008
STATUS
approved