Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Feb 27 2024 03:05:25
%S 1,11,171,2731,43691,699051,11184811,178956971,2863311531,45812984491,
%T 733007751851,11728124029611,187649984473771,3002399751580331,
%U 48038396025285291,768614336404564651,12297829382473034411,196765270119568550571,3148244321913096809131
%N First quadrisection of A139763 (1, 2, 3, 4, 11, ...).
%H Vincenzo Librandi, <a href="/A139792/b139792.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,-16)
%F a(n) = 16*a(n-1) - 5.
%F a(n) = 10*A131865(n) + 1.
%F G.f.: ( 1-6*x ) / ( (16*x-1)*(x-1) ). - _R. J. Mathar_, Feb 06 2011
%F E.g.f.: (exp(x) + 2*exp(16*x))/3. - _G. C. Greubel_, Nov 03 2018
%F From _Jianing Song_, Aug 30 2022: (Start)
%F a(n) = A001045(4*n+1).
%F a(n+1) - a(n) = 10*A001025(n). (End)
%t Table[(1 + 2^(4*n+1))/3, {n,0,20}] (* _G. C. Greubel_, Nov 03 2018 *)
%o (Magma) [(1+2*16^n)/3: n in [0..20]]; // _Vincenzo Librandi_, Aug 09 2011
%o (PARI) vector(20, n, n--; (1 + 2^(4*n+1))/3) \\ _G. C. Greubel_, Nov 03 2018
%Y Second quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A144864 (third), and A141060 (fourth).
%K nonn,easy
%O 0,2
%A _Paul Curtz_, May 21 2008