The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144864 a(n) = (4*16^(n-1)-1)/3. 7
 1, 21, 341, 5461, 87381, 1398101, 22369621, 357913941, 5726623061, 91625968981, 1466015503701, 23456248059221, 375299968947541, 6004799503160661, 96076792050570581, 1537228672809129301, 24595658764946068821, 393530540239137101141, 6296488643826193618261, 100743818301219097892181 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Old name was: A144863, read as binary numbers, converted to base 10. All numbers in this sequence for n>1 are congruent to 5 mod 16. - Artur Jasinski, Sep 25 2008 From Omar E. Pol, Sep 10 2011: (Start) It appears that this is a bisection of A002450. It appears that this is a bisection of A084241. It appears that this is a bisection of A153497. It appears that this is a bisection of A088556, if n>=2. (End) All of the above is trivially true. - Joerg Arndt, Aug 19 2014 The aerated sequence (b(n))n>=1 = [1, 0, 21, 0, 341, 0, 5461, 0, 87381, ...] is a fourth-order linear divisibility sequence; that is, a(n) divides a(m) whenever n divides m. It is the case P1 = 0, P2 = -9, Q = -4 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Aug 26 2022 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..500 H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. Index entries for linear recurrences with constant coefficients, signature (17,-16). FORMULA a(n) = 16^n/12 - 1/3; a(n) = 16*a(n-1) + 5, a(1)=1. - Artur Jasinski, Sep 25 2008 G.f.: x*(1+4*x) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Jan 06 2011 a(n)=b such that Integral_{x=-Pi/2..Pi/2} (-1)^(n+1)*2^(2*n-3)*(cos((2*n-1)*x))/(5/4+sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011 a(n) = (2^(4*n-2)-1)/3. - Klaus Purath, Jan 31 2021 From Jianing Song, Aug 30 2022: (Start) a(n) = A001045(4*n-2). a(n+1) - a(n) = 10*A013776(n-1) = 20*A001025(n-1) for n >= 1. a(n) = 10*A098704(n) + 1 = 20*A131865(n-2) + 1 for n >= 2. (End) E.g.f.: (exp(16*x) - 4*exp(x) + 3)/12. - Stefano Spezia, Apr 18 2024 MATHEMATICA Table[1/3 (-1 + 16^(n - 1)) + 16^(n - 1), {n, 1, 17}] (* Artur Jasinski, Sep 25 2008 *) LinearRecurrence[{17, -16}, {1, 21}, 20] (* Harvey P. Dale, Jun 29 2022 *) PROG (Magma) [16^n/12-1/3: n in [1..20]]; // Vincenzo Librandi, Aug 03 2011 (PARI) vector(66, n, (4*16^(n-1)-1)/3) \\ Joerg Arndt, Aug 19 2014 CROSSREFS Cf. A001025, A002450, A013776, A056830, A084241, A088556, A094028, A098704, A131865, A135576, A144863, A153497. Third quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A139792 (second), and A141060 (fourth). Sequence in context: A020311 A295350 A068705 * A295604 A323277 A075921 Adjacent sequences: A144861 A144862 A144863 * A144865 A144866 A144867 KEYWORD easy,nonn AUTHOR Artur Jasinski, Sep 23 2008 EXTENSIONS New name from Joerg Arndt, Aug 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 23:48 EDT 2024. Contains 373560 sequences. (Running on oeis4.)