login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088556
Numbers of the form (4^n + 4^(n-1) + ... + 1) + (n mod 2).
2
6, 21, 86, 341, 1366, 5461, 21846, 87381, 349526, 1398101, 5592406, 22369621, 89478486, 357913941, 1431655766, 5726623061, 22906492246, 91625968981, 366503875926, 1466015503701, 5864062014806, 23456248059221, 93824992236886, 375299968947541, 1501199875790166
OFFSET
1,1
FORMULA
If n is even, then 4^n + ... + 1 = (4^(n+1) - 1)/3 = (2^(n+1) - 1)(2^n+1) + 1)/3. - R. K. Guy, Nov 17 2003
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Colin Barker, Apr 02 2012
G.f.: x*(6-3*x-4*x^2) / ((1-x)*(1+x)*(1-4*x)). - Colin Barker, Apr 02 2012
MATHEMATICA
LinearRecurrence[{4, 1, -4}, {6, 21, 86}, 50] (* Vincenzo Librandi, Jun 14 2015 *)
PROG
(PARI) trajpolypn(n1) = { for(x1=1, n1, y1 = polypn(4, x1); print1(y1", ") ) }
polypn(n, p) = { x=n; if(p%2, y=2, y=1); for(m=1, p, y=y+x^m; ); return(y) }
(PARI) Vec(x*(6-3*x-4*x^2)/((1-x)*(1+x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Jun 13 2015
(Magma) I:=[6, 21, 86]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 14 2015
CROSSREFS
Sequence in context: A219596 A182251 A191597 * A316105 A137966 A304187
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Nov 17 2003
STATUS
approved