OFFSET
0,3
COMMENTS
a(n) and successive differences define a square array T(0,k) = a(k), T(n,k) = T(n-1,k+1) - T(n-1,k):
0, 1, 6, 21, 85, 342,...
1, 5, 15, 64, 257, 1023,...
4, 10, 49, 193, 766, 3073,...
As with any sequence which obeys a homogeneous linear recurrence (we say it once, only once and we shall not repeat it), the recurrence is also valid for the rows of such arrays of higher order differences.
LINKS
FORMULA
MAPLE
A061347 := proc(n) op(1+(n mod 3), [-2, 1, 1]) ; end proc:
seq(A191597(n), n=0..30) ; # R. J. Mathar, Jun 08 2011
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 4, 3, 3]^n*[0; 1; 6])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 08 2011
STATUS
approved