login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191597
Expansion of x*(1+3*x)/ ( (1-4*x)*(1+x+x^2)).
2
0, 1, 6, 21, 85, 342, 1365, 5461, 21846, 87381, 349525, 1398102, 5592405, 22369621, 89478486, 357913941, 1431655765, 5726623062, 22906492245, 91625968981, 366503875926, 1466015503701, 5864062014805, 23456248059222, 93824992236885, 375299968947541
OFFSET
0,3
COMMENTS
a(n) and successive differences define a square array T(0,k) = a(k), T(n,k) = T(n-1,k+1) - T(n-1,k):
0, 1, 6, 21, 85, 342,...
1, 5, 15, 64, 257, 1023,...
4, 10, 49, 193, 766, 3073,...
As with any sequence which obeys a homogeneous linear recurrence (we say it once, only once and we shall not repeat it), the recurrence is also valid for the rows of such arrays of higher order differences.
FORMULA
a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3), n >= 3.
a(n) = A024495(2*n).
a(n) = A113405(2*n) + A113405(2*n+1).
a(n+1) - 4*a(n) = A132677(n).
a(n+3) - a(n) = 21*4^n.
a(n) = A178872(n) + 3*A178872(n-1) = (4^n-A061347(n+1))/3. - R. J. Mathar, Jun 08 2011
MAPLE
A061347 := proc(n) op(1+(n mod 3), [-2, 1, 1]) ; end proc:
A191597 := proc(n) (4^n-A061347(n+1))/3 ; end proc:
seq(A191597(n), n=0..30) ; # R. J. Mathar, Jun 08 2011
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 4, 3, 3]^n*[0; 1; 6])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
Sequence in context: A320649 A219596 A182251 * A088556 A316105 A137966
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 08 2011
STATUS
approved