login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1+3*x)/ ( (1-4*x)*(1+x+x^2)).
2

%I #22 Dec 16 2023 15:51:13

%S 0,1,6,21,85,342,1365,5461,21846,87381,349525,1398102,5592405,

%T 22369621,89478486,357913941,1431655765,5726623062,22906492245,

%U 91625968981,366503875926,1466015503701,5864062014805,23456248059222,93824992236885,375299968947541

%N Expansion of x*(1+3*x)/ ( (1-4*x)*(1+x+x^2)).

%C a(n) and successive differences define a square array T(0,k) = a(k), T(n,k) = T(n-1,k+1) - T(n-1,k):

%C 0, 1, 6, 21, 85, 342,...

%C 1, 5, 15, 64, 257, 1023,...

%C 4, 10, 49, 193, 766, 3073,...

%C As with any sequence which obeys a homogeneous linear recurrence (we say it once, only once and we shall not repeat it), the recurrence is also valid for the rows of such arrays of higher order differences.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,4).

%F a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3), n >= 3.

%F a(n) = A024495(2*n).

%F a(n) = A113405(2*n) + A113405(2*n+1).

%F a(n+1) - 4*a(n) = A132677(n).

%F a(n+3) - a(n) = 21*4^n.

%F a(n) = A178872(n) + 3*A178872(n-1) = (4^n-A061347(n+1))/3. - _R. J. Mathar_, Jun 08 2011

%p A061347 := proc(n) op(1+(n mod 3),[-2,1,1]) ; end proc:

%p A191597 := proc(n) (4^n-A061347(n+1))/3 ; end proc:

%p seq(A191597(n),n=0..30) ; # _R. J. Mathar_, Jun 08 2011

%o (PARI) a(n)=([0,1,0; 0,0,1; 4,3,3]^n*[0;1;6])[1,1] \\ _Charles R Greathouse IV_, Jul 06 2017

%K nonn,easy

%O 0,3

%A _Paul Curtz_, Jun 08 2011