login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A191596
Expansion of (1+x)^4/(1-x)^7.
1
1, 11, 62, 242, 743, 1925, 4396, 9108, 17469, 31471, 53834, 88166, 139139, 212681, 316184, 458728, 651321, 907155, 1241878, 1673882, 2224607, 2918861, 3785156, 4856060, 6168565, 7764471, 9690786, 12000142, 14751227, 18009233, 21846320
OFFSET
0,2
COMMENTS
The first, second and third differences are in A069038, A001846 and A008412, respectively.
Inverse binomial transform of this sequence: 1, 10, 41, 88, 104, 64, 16, 0, 0 (0 continued).
Also (by Superseeker), the n-th coefficient of the expansion of ((1+x)^4/(1-x)^7)*(1+x)^n is A006976(n-1).
LINKS
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550, 2013
FORMULA
G.f.: (1+x)^4/(1-x)^7.
a(n) = (n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90.
a(n) = a(-n-3) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
By Superseeker:
a(n)+a(n+1) = A069039(n+2),
a(n+2)-a(n) = A001847(n+2),
a(n+2)+2*a(n+1)+a(n) = A001848(n+2).
MAPLE
A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
MATHEMATICA
CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
PROG
(Maxima) makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
(Magma) [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
(PARI) a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011
CROSSREFS
Cf. A008415, A001848, A069039, A008412, A001846, A069038, A061927 (for type of g.f.).
Sequence in context: A289646 A020454 A009016 * A227087 A052051 A162946
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 08 2011
STATUS
approved