login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191596
Expansion of (1+x)^4/(1-x)^7.
1
1, 11, 62, 242, 743, 1925, 4396, 9108, 17469, 31471, 53834, 88166, 139139, 212681, 316184, 458728, 651321, 907155, 1241878, 1673882, 2224607, 2918861, 3785156, 4856060, 6168565, 7764471, 9690786, 12000142, 14751227, 18009233, 21846320
OFFSET
0,2
COMMENTS
The first, second and third differences are in A069038, A001846 and A008412, respectively.
Inverse binomial transform of this sequence: 1, 10, 41, 88, 104, 64, 16, 0, 0 (0 continued).
Also (by Superseeker), the n-th coefficient of the expansion of ((1+x)^4/(1-x)^7)*(1+x)^n is A006976(n-1).
LINKS
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550, 2013
FORMULA
G.f.: (1+x)^4/(1-x)^7.
a(n) = (n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90.
a(n) = a(-n-3) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
By Superseeker:
a(n)+a(n+1) = A069039(n+2),
a(n+2)-a(n) = A001847(n+2),
a(n+2)+2*a(n+1)+a(n) = A001848(n+2).
MAPLE
A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
MATHEMATICA
CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
PROG
(Maxima) makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
(Magma) [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
(PARI) a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011
CROSSREFS
Cf. A008415, A001848, A069039, A008412, A001846, A069038, A061927 (for type of g.f.).
Sequence in context: A289646 A020454 A009016 * A227087 A052051 A162946
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 08 2011
STATUS
approved