OFFSET
0,2
COMMENTS
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550, 2013
M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
MAPLE
A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
MATHEMATICA
CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
PROG
(Maxima) makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
(Magma) [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
(PARI) a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 08 2011
STATUS
approved