login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006976
Coefficients of Chebyshev T polynomials: a(n) = A053120(n+12, n), n >= 0.
(Formerly M4907)
12
1, 13, 98, 560, 2688, 11424, 44352, 160512, 549120, 1793792, 5637632, 17145856, 50692096, 146227200, 412778496, 1143078912, 3111714816, 8341487616, 22052208640, 57567870976, 148562247680, 379364311040, 959384125440
OFFSET
0,2
COMMENTS
Binomial transform of A069039. - Paul Barry, Feb 19 2003
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n >= 5, a(n-5) is the number of (n+6)-subsets of X intersecting each X_i, (i = 1, 2, ..., n). - Milan Janjic, Nov 18 2007
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
FORMULA
G.f.: (1-x)/(1-2*x)^7.
a(n) = 2^n*binomial(n+5, 5)*(n+12)/12. [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]
a(n) = Sum_{k = 0..floor((n+12)/2)} C(n+12,2*k)*C(k,6). - Paul Barry, May 15 2003
E.g.f.: (1/45)*exp(2*x)*(45 + 495*x + 1125*x^2 + 900*x^3 + 300*x^4 + 42*x^5 + 2*x^6). - Stefano Spezia, Jan 03 2020
MAPLE
seq(2^(n-1)*binomial(n+5, 5)*(n+12)/6, n=0..25); # G. C. Greubel, Aug 27 2019
MATHEMATICA
Table[2^(n-1)*Binomial[n+5, 5]*(n+12)/6, {n, 0, 25}] (* G. C. Greubel, Aug 27 2019 *)
LinearRecurrence[{14, -84, 280, -560, 672, -448, 128}, {1, 13, 98, 560, 2688, 11424, 44352}, 30] (* Harvey P. Dale, Sep 26 2024 *)
PROG
(Magma) [2^(n-1)/6*Binomial(n+5, 5)*(n+12) : n in [0..25]]; // Brad Clardy, Mar 10 2012
(PARI) vector(26, n, 2^(n-2)*binomial(n+4, 5)*(n+11)/6) \\ G. C. Greubel, Aug 27 2019
(Sage) [2^(n-1)*binomial(n+5, 5)*(n+12)/6 for n in (0..25)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..25], n-> 2^(n-1)*Binomial(n+5, 5)*(n+12)/6); # G. C. Greubel, Aug 27 2019
CROSSREFS
a(n) = A039991(n+12, 12), A053120.
Partial sums are in A002409.
Sequence in context: A372770 A158795 A075899 * A282992 A295271 A034270
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
Name clarified by Wolfdieter Lang, Nov 26 2019
STATUS
approved