login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219596
Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array
1
6, 21, 84, 233, 550, 1188, 2415, 4684, 8746, 15833, 27945, 48286, 81907, 136629, 224336, 362747, 577797, 906780, 1402432, 2138159, 3214644, 4768098, 6980453, 10091830, 14415652, 20356811, 28433339, 39302076, 53788873, 72923915, 97982798
OFFSET
1,1
COMMENTS
Row 3 of A219595.
LINKS
FORMULA
Empirical: a(n) = (1/181440)*n^9 - (1/8064)*n^8 + (11/3780)*n^7 - (107/2880)*n^6 + (749/1728)*n^5 - (1943/1152)*n^4 + (168241/90720)*n^3 + (355057/10080)*n^2 - (306913/2520)*n + 137 for n>3.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(6 - 39*x + 144*x^2 - 382*x^3 + 740*x^4 - 1009*x^5 + 933*x^6 - 554*x^7 + 195*x^8 - 32*x^9 - 5*x^10 + 7*x^11 - 2*x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)
EXAMPLE
Some solutions for n=3:
..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..1
..1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..1..1
..2..1..0....2..2..1....0..0..0....1..1..1....1..0..0....1..1..0....2..2..2
CROSSREFS
Cf. A219595.
Sequence in context: A108306 A199115 A320649 * A182251 A191597 A088556
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2012
STATUS
approved