login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array
1

%I #7 Jul 26 2018 09:26:06

%S 6,21,84,233,550,1188,2415,4684,8746,15833,27945,48286,81907,136629,

%T 224336,362747,577797,906780,1402432,2138159,3214644,4768098,6980453,

%U 10091830,14415652,20356811,28433339,39302076,53788873,72923915,97982798

%N Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array

%C Row 3 of A219595.

%H R. H. Hardin, <a href="/A219596/b219596.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/181440)*n^9 - (1/8064)*n^8 + (11/3780)*n^7 - (107/2880)*n^6 + (749/1728)*n^5 - (1943/1152)*n^4 + (168241/90720)*n^3 + (355057/10080)*n^2 - (306913/2520)*n + 137 for n>3.

%F Conjectures from _Colin Barker_, Jul 26 2018: (Start)

%F G.f.: x*(6 - 39*x + 144*x^2 - 382*x^3 + 740*x^4 - 1009*x^5 + 933*x^6 - 554*x^7 + 195*x^8 - 32*x^9 - 5*x^10 + 7*x^11 - 2*x^12) / (1 - x)^10.

%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.

%F (End)

%e Some solutions for n=3:

%e ..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..1

%e ..1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..1..1

%e ..2..1..0....2..2..1....0..0..0....1..1..1....1..0..0....1..1..0....2..2..2

%Y Cf. A219595.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 23 2012