login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).
7

%I #33 Mar 12 2021 22:24:42

%S 1,1,1,2,3,10,39,490,20631,10349290,213941840151,2214253254659846890,

%T 473721461633379426414550183191,

%U 1048939288228833100615882755549676600679754298090

%N Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).

%H Michael Somos and R. Haas, <a href="http://www.jstor.org/stable/3647911">A linked pair of sequences implies the primes are infinite</a>, Amer. Math. Monthly, 110(6) (2003), 539-540.

%F a(n) = (a(n-1) + a(n-2))*a(n-2) for n >= 2.

%F Lim_{n -> infinity} a(n)/a(n-1)^phi = 1, where phi = A001622. - _Gerald McGarvey_, Aug 29 2004

%F a(n) ~ c^(phi^n), where c = 1.23642417842410860616065684299168229758826316461949675490684055924721259... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, May 21 2015

%t Flatten[{1, RecurrenceTable[{a[n]==(a[n-1]+a[n-2])*a[n-2], a[1]==1, a[2]==1},a,{n,1,10}]}] (* _Vaclav Kotesovec_, May 21 2015 *)

%o (PARI) {a(n) = local(v); if( n<3, n>=0, v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[2])}

%o (PARI) {a(n) = if( n<3, n>=0, (a(n-1) + a(n-2)) * a(n-2))}

%Y Cf. A001622, A003686, A064526, A064847, A070231, A070233, A070234, A094303, A236394.

%K nonn,easy

%O 0,4

%A _Michael Somos_, Sep 20 2001