Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Mar 12 2021 22:24:42
%S 0,1,2,3,5,13,49,529,21121,10369921,213952189441,2214253468601687041,
%T 473721461635593679669210030081,
%U 1048939288228833101089604217183056027094304481281
%N Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
%C Every nonzero term is relatively prime to all others (which proves that there are infinitely many primes). See A236394 for the primes that appear.
%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
%H Michael Somos and R. Haas, <a href="http://www.jstor.org/stable/3647911">A linked pair of sequences implies the primes are infinite</a>, Amer. Math. Monthly, 110(6) (2003), 539-540.
%F a(n) = (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)) for n >= 2.
%F a(n) ~ c^(phi^n), where c = 1.2364241784241086061606568429916822975882631646194967549068405592472125928485... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, May 21 2015
%t Flatten[{0,1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3},a,{n,2,15}]}] (* _Vaclav Kotesovec_, May 21 2015 *)
%o (PARI) {a(n) = local(v); if( n<3, max(0, n), v = [1,1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
%o (PARI) {a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
%Y Cf. A001685, A003686, A064183, A064847, A070231, A070233, A070234, A094303.
%Y See A236394 for the primes that are produced.
%K nonn,easy
%O 0,3
%A _Michael Somos_, Oct 07 2001