

A261192


a(0) = 2; for n>0, a(n) = smallest prime p such that p > a(n1) and p is congruent to n modulo prime(n).


1



2, 3, 5, 13, 53, 71, 97, 109, 179, 193, 271, 383, 419, 587, 659, 673, 811, 1433, 1543, 1627, 2221, 2357, 4051, 4339, 4919, 5651, 5783, 6619, 6983, 7877, 8053, 11969, 12739, 12911, 14629, 15233, 15287, 15737, 18131, 18743, 20627, 21163, 21943, 22963, 23011, 23291, 25717, 26633, 27031, 27743
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(10314) = 10000363333.


LINKS



EXAMPLE

a(4) = 53 because prime(4) = 7, 53 == 4 (mod 7) and 53 is the smallest such prime greater than a(3) = 13.


MATHEMATICA

f[n_] := f[n] = Block[{k = Prime@ n, q = Prime@ n}, While[k + n <= f[n  1]  ! PrimeQ[k + n], k += q]; k + n]; f[0] = 2; Array[f, 50, 0]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



