login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261193
a(n) = n! - 2.
1
-1, -1, 0, 4, 22, 118, 718, 5038, 40318, 362878, 3628798, 39916798, 479001598, 6227020798, 87178291198, 1307674367998, 20922789887998, 355687428095998, 6402373705727998, 121645100408831998, 2432902008176639998, 51090942171709439998, 1124000727777607679998
OFFSET
0,4
COMMENTS
It is possible to prove that, if gcd(k,a,b) = 1, then k^a + a^b + b^k = n! can be solved only if a = b = 1, thus k = n! - 2 for every n > 2.
LINKS
M Cipu, F. Luca and M. Mignotte, Solutions of the diophantine equation x^y+y^z+z^x=n!, Glasgow Mathematical Journal, 50(2008), 217-232.
FORMULA
a(n) = A000142(n) - 2 = A033312(n) - 1.
E.g.f.: 1/(1-x) - 2*exp(x). - Alois P. Heinz, Sep 10 2015
MAPLE
A261193:=n->n!-2: seq(A261193(n), n=1..20); # Wesley Ivan Hurt, Aug 13 2015
MATHEMATICA
Table[n! - 2, {n, 20}] (* Wesley Ivan Hurt, Aug 13 2015 *)
PROG
(Magma) [Factorial(n)-2 : n in [1..20]]; // Wesley Ivan Hurt, Aug 13 2015
(PARI) a(n)=n!-2 \\ Charles R Greathouse IV, Aug 28 2015
CROSSREFS
Sequence in context: A245087 A155596 A244900 * A025569 A098834 A065983
KEYWORD
sign,easy
AUTHOR
Marco Ripà, Aug 11 2015
EXTENSIONS
a(0)-a(1) corrected by David A. Corneth, Sep 10 2015
STATUS
approved