login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261196
Expansion of sqrt(8*x + sqrt(1 + 64*x^2)).
1
1, 4, 8, -32, -160, 896, 5376, -33792, -219648, 1464320, 9957376, -68796416, -481574912, 3408068608, 24343347200, -175272099840, -1270722723840, 9268801044480, 67971207659520, -500840477491200, -3706219533434880, 27531916534087680, 205237923254108160
OFFSET
0,2
COMMENTS
Signs are important to distinguish this from (for example) A098579.
Sqrt(A(x)) = 1 + 2*x + 2*x^2 - 20*x^3 - 42*x^4 + 572*x^5 ... defines another (new) integer sequence.
LINKS
FORMULA
G.f. A(x) satisfies: A(x)^4 = 1 + 16*x*A(x)^2.
A(x) = sqrt(G(4*x)), where G(x) is the g.f. of A182122.
A(x) * A(-x) = 1.
A(x) = sqrt(1 + 8*x + 32*x^2*C(-16*x^2)), where C(x) is the g.f. of A000108.
a(n) = A002420(n)*2^n*(-1)^(n*(n+1)/2). - M. F. Hasler, Aug 14 2015
Conjecture D-finite with recurrence: n*(n-1)*a(n) +(n-1)*(n-2)*a(n-1) +16*(2*n-3)*(2*n-5)*a(n-2) +16*(2*n-5)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Jun 07 2016
EXAMPLE
A(x) = 1 + 4*x + 8*x^2 - 32*x^3 - 160*x^4 + 896*x^5 + 5376*x^6 ...
A(x)^2 = 1 + 8*x + 32*x^2 + 0*x^3 - 512*x^4 + 0*x^5 +16384*x^6 ...
A(x)^4 = 1 + 16*x + 128*x^2 + 512*x^3 + 0*x^4 -8192*x^5 + 0*x^6 ...
MATHEMATICA
CoefficientList[Series[Sqrt[8 x + Sqrt[1 + 64 x^2]], {x, 0, 45}], x] (* Vincenzo Librandi, Aug 12 2015 *)
PROG
(PARI) Vec(sqrt(8*x + sqrt(1 + 64*x^2))) \\ M. F. Hasler, Aug 14 2015
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(8*x+Sqrt(1+64*x^2)))); // G. C. Greubel, Aug 12 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Werner Schulte, Aug 11 2015
STATUS
approved