login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001973 Expansion of (1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)).
(Formerly M2441 N0969)
7
1, 1, 3, 5, 8, 12, 18, 24, 33, 43, 55, 69, 86, 104, 126, 150, 177, 207, 241, 277, 318, 362, 410, 462, 519, 579, 645, 715, 790, 870, 956, 1046, 1143, 1245, 1353, 1467, 1588, 1714, 1848, 1988 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(1..3)=0; a(n) is the number of partitions of 2*(n+1) with 4 different numbers from the set {1,...,n}; the number of partitions of 2*n + 2 - C and 2*n + 2 + C are equal; example: n=6; 2*n + 2 = 14; a(6)=3; (10,1), (11,1), (12,2), (13,2), (14,3), (15,2), (16,2), (17,1), (18,1). - Paul Weisenhorn, Jun 01 2009

REFERENCES

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.

M. Jeger, Einfuehrung in die Kombinatorik, Klett, 1975, pages 110ff. [From Paul Weisenhorn, Jun 01 2009]

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]

Shalosh B. Ekhad, Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1)

FORMULA

a(n) is the coefficient of x^(2*n+2) in the g.f. Product_{s=1..4} (x^s - x^(n+1))/(1-x^s). - Paul Weisenhorn, Jun 01 2009

a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7). Vincenzo Librandi, Jun 11 2012

MAPLE

A001973:=(1-z+z**2)/(z+1)/(z**2+z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation

with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card<r), U=Sequence(Z, card>=2)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=6..45) ; # Zerinvary Lajos, Feb 07 2008

MATHEMATICA

CoefficientList[Series[(1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2012 *)

PROG

(PARI) Vec((1+x^3)/((1-x)*(1-x^2)^2*(1-x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

CROSSREFS

Sequence in context: A265063 A098202 A164653 * A248374 A020745 A232896

Adjacent sequences: A001970 A001971 A001972 * A001974 A001975 A001976

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 11:38 EST 2022. Contains 358441 sequences. (Running on oeis4.)