This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001975 Number of partitions of floor(5n/2) into n nonnegative integers each no more than 5. (Formerly M2551 N1010) 4
 1, 1, 3, 6, 12, 20, 32, 49, 73, 102, 141, 190, 252, 325, 414, 521, 649, 795, 967, 1165, 1394, 1651, 1944, 2275, 2649, 3061, 3523, 4035, 4604, 5225, 5910, 6660, 7483, 8372, 9343, 10395, 11538, 12764, 14090, 15516, 17053, 18691, 20451, 22330, 24342, 26476, 28754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(5n/2) involving the letters a, b, c, d, e, f, having weights 0, 1, 2, 3, 4, 5 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008 REFERENCES A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy] Shalosh B. Ekhad, Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019. FORMULA Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)), where w=floor(5n/2). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008 G.f.: -(x^14 -x^13 +2*x^12 +x^11 +2*x^10 +3*x^9 +x^8 +5*x^7 +x^6 +3*x^5 +2*x^4 +x^3 +2*x^2 -x+1) / ((x^4+1) *(x^2+x+1) *(x^2-x+1) *(x^2+1)^2 *(x+1)^3 *(x-1)^5). - Alois P. Heinz, Jul 25 2015 PROG (PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)); n=350; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=floor(5*d/2); print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008 CROSSREFS Sequence in context: A066140 A200067 A061061 * A096220 A034333 A182978 Adjacent sequences:  A001972 A001973 A001974 * A001976 A001977 A001978 KEYWORD nonn,easy AUTHOR EXTENSIONS Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)