login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328325
Expansion of Product_{k>=0} 1/(1 - x^(k^k)).
2
1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 113, 122, 131, 140, 150, 161, 172, 183, 195, 208, 221, 234, 248, 263, 278, 293, 309, 326, 343, 360, 378, 397, 416, 435, 455, 476, 497, 519, 542, 566, 590, 615, 641, 668, 695
OFFSET
0,2
COMMENTS
Partial sums of A328301.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A328301(k).
G.f.: 1/(1-x) + Sum_{n>0} x^(n^n) / Product_{k=0..n} (1 - x^(k^k)).
EXAMPLE
G.f.: 1/(1-x) + x/(1-x)^2 + x^4/((1-x)^2*(1-x^4)) + x^27/((1-x)^2*(1-x^4)*(1-x^27)) + ... .
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(i^i))
end:
a:= proc(n) option remember; `if`(n<2, n+1, a(n-1)+
b(n, floor((t-> t/LambertW(t))(log(n)))))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Oct 12 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + With[{p = i^i}, If[p > n, 0, b[n-p, i]]]];
a[n_] := a[n] = If[n < 2, n+1, a[n-1] + b[n, Floor[PowerExpand[Log[n]/ ProductLog[Log[n]]]]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)
PROG
(PARI) N=99; x='x+O('x^N); m=1; while(N>=m^m, m++); Vec(1/prod(k=0, m-1, 1-x^k^k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 12 2019
STATUS
approved