OFFSET
0,2
COMMENTS
Partial sums of A328301.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = Sum_{k=0..n} A328301(k).
G.f.: 1/(1-x) + Sum_{n>0} x^(n^n) / Product_{k=0..n} (1 - x^(k^k)).
EXAMPLE
G.f.: 1/(1-x) + x/(1-x)^2 + x^4/((1-x)^2*(1-x^4)) + x^27/((1-x)^2*(1-x^4)*(1-x^27)) + ... .
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(i^i))
end:
a:= proc(n) option remember; `if`(n<2, n+1, a(n-1)+
b(n, floor((t-> t/LambertW(t))(log(n)))))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Oct 12 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + With[{p = i^i}, If[p > n, 0, b[n-p, i]]]];
a[n_] := a[n] = If[n < 2, n+1, a[n-1] + b[n, Floor[PowerExpand[Log[n]/ ProductLog[Log[n]]]]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)
PROG
(PARI) N=99; x='x+O('x^N); m=1; while(N>=m^m, m++); Vec(1/prod(k=0, m-1, 1-x^k^k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 12 2019
STATUS
approved