OFFSET
1,1
COMMENTS
Terms k such that both k and k+1 are primitive Zumkeller numbers (A180332) are 82004, 84524, 158235, 516704, 2921535, 5801984, ... (A361934).
There are infinitely many such k as proven by Somu et al. (2023). - Duc Van Khanh Tran, Dec 07 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Giovanni Resta)
Sai Teja Somu, Andrzej Kukla, and Duc Van Khanh Tran, Some results on Zumkeller numbers, arXiv:2310.14149 [math.NT], 2023.
MATHEMATICA
zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zq1 = False; s = {}; Do[zq2 = zumkellerQ[n]; If[zq1 && zq2, AppendTo[s, n - 1]]; zq1 = zq2, {n, 2, 10^5}]; s (* after T. D. Noe at A083207 *)
PROG
(Python)
from itertools import count, islice
from sympy import divisors
def A328327_gen(startvalue=1): # generator of terms >= startvalue
m = -1
for n in count(max(startvalue, 1)):
d = divisors(n)
s = sum(d)
if s&1^1 and n<<1<=s:
d = d[:-1]
s2, ld = (s>>1)-n, len(d)
z = [[0 for _ in range(s2+1)] for _ in range(ld+1)]
for i in range(1, ld+1):
y = min(d[i-1], s2+1)
z[i][:y] = z[i-1][:y]
for j in range(y, s2+1):
z[i][j] = max(z[i-1][j], z[i-1][j-y]+y)
if z[i][s2] == s2:
if m == n-1:
yield m
m = n
break
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 12 2019
STATUS
approved